高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)歸納_第1頁
高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)歸納_第2頁
高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)歸納_第3頁
高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)歸納_第4頁
高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)歸納_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)歸納高中數(shù)學(xué)函數(shù)學(xué)問點(diǎn)歸納1

1.函數(shù)的定義

函數(shù)是高考數(shù)學(xué)中的重點(diǎn)內(nèi)容,學(xué)習(xí)函數(shù)需要首先把握函數(shù)的各個(gè)學(xué)問點(diǎn),然后運(yùn)用函數(shù)的各種性質(zhì)來解決詳細(xì)的問題。

設(shè)A、B是非空的數(shù)集,假如根據(jù)某種確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A-B為從集合A到集合B的一個(gè)函數(shù),記作y=f(x),x∈A

2.函數(shù)的定義域

函數(shù)的定義域分為自然定義域和實(shí)際定義域兩種,假如給定的函數(shù)的解析式(不注明定義域),其定義域應(yīng)指的是使該解析式有意義的自變量的取值范圍(稱為自然定義域),假如函數(shù)是有實(shí)際問題確定的,這時(shí)應(yīng)依據(jù)自變量的實(shí)際意義來確定,函數(shù)的值域是由全體函數(shù)值組成的集合。

3.求解析式

求函數(shù)的解析式一般有三種種狀況:

(1)依據(jù)實(shí)際問題建立函數(shù)關(guān)系式,這種狀況需引入合適的變量,依據(jù)數(shù)學(xué)的有關(guān)學(xué)問找出函數(shù)關(guān)系式。

(2)有時(shí)體中給出函數(shù)特征,求函數(shù)的解析式,可用待定系數(shù)法。

(3)換元法求解析式,f[h(x)]=g(x)求f(x)的問題,往往可設(shè)h(x)=t,從中解出x,代入g(x)進(jìn)行換元來解。把握求函數(shù)解析式的前提是,需要對各種函數(shù)的性質(zhì)了解且熟識(shí)。

目前我們已經(jīng)學(xué)習(xí)了常數(shù)函數(shù)、指數(shù)與指數(shù)函數(shù)、對數(shù)與對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)、反比例函數(shù)、二次函數(shù)以及由以上幾種函數(shù)加減乘除,或者復(fù)合的一些相對較簡單的函數(shù),但是這種函數(shù)也是初等函數(shù)。

高中數(shù)學(xué)函數(shù)學(xué)問點(diǎn)歸納2

(1)高中函數(shù)公式的變量:因變量,自變量。

在用圖象表示變量之間的關(guān)系時(shí),通常用水平方向的數(shù)軸上的點(diǎn)自變量,用豎直方向的數(shù)軸上的點(diǎn)表示因變量。

(2)一次函數(shù):

①若兩個(gè)變量,間的關(guān)系式可以表示成(為常數(shù),不等于0)的形式,則稱是的一次函數(shù)。

②當(dāng)=0時(shí),稱是的正比例函數(shù)。

(3)高中函數(shù)的一次函數(shù)的圖象及性質(zhì)

①把一個(gè)函數(shù)的自變量與對應(yīng)的因變量的值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對應(yīng)點(diǎn),全部這些點(diǎn)組成的圖形叫做該函數(shù)的圖象。

②正比例函數(shù)=的圖象是經(jīng)過原點(diǎn)的一條直線。

③在一次函數(shù)中,當(dāng)0,O,則經(jīng)2、3、4象限;當(dāng)0,0時(shí),則經(jīng)1、2、4象限;當(dāng)0,0時(shí),則經(jīng)1、3、4象限;當(dāng)0,0時(shí),則經(jīng)1、2、3象限。

④當(dāng)0時(shí),的值隨值的增大而增大,當(dāng)0時(shí),的值隨值的增大而削減。

(4)高中函數(shù)的二次函數(shù):

①一般式:,對稱軸是頂點(diǎn)是;

②頂點(diǎn)式:,對稱軸是頂點(diǎn)是;

③交點(diǎn)式:,其中,是拋物線與x軸的交點(diǎn)

高中數(shù)學(xué)函數(shù)學(xué)問點(diǎn)歸納3

一、定義與定義式:

自變量x和因變量y有如下關(guān)系:

y=kx+b

則此時(shí)稱y是x的一次函數(shù)。

特殊地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。

即:y=kx(k為常數(shù),k≠0)

二、一次函數(shù)的性質(zhì):

1.y的變化值與對應(yīng)的x的變化值成正比例,比值為k

即:y=kx+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))

2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。

三、一次函數(shù)的圖像及性質(zhì):

1.作法與圖形:通過如下3個(gè)步驟

(1)列表;

(2)描點(diǎn);

(3)連線,可以作出一次函數(shù)的圖像——一條直線。

因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))

2.性質(zhì):

(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿意等式:y=kx+b

(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。

3.k,b與函數(shù)圖像所在象限:

當(dāng)k>0時(shí),直線必通過一、三象限,y隨x的增大而增大;

當(dāng)k<0時(shí),直線必通過二、四象限,y隨x的增大而減小。

當(dāng)b>0時(shí),直線必通過一、二象限;

當(dāng)b=0時(shí),直線通過原點(diǎn)

當(dāng)b<0時(shí),直線必通過三、四象限。

特殊地,當(dāng)b=O時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。

這時(shí),當(dāng)k>0時(shí),直線只通過一、三象限;當(dāng)k<0時(shí),直線只通過二、四象限

四、確定一次函數(shù)的表達(dá)式:

已知點(diǎn)A(x1,y1);B(x2,y2),請確定過點(diǎn)A、B的一次函數(shù)的表達(dá)式。

(1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b

(2)由于在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿意等式y(tǒng)=kx+b,所以可以列出2個(gè)方程:y1=kx1+b……①和y2=kx2+b……②

(3)解這個(gè)二元一次方程,得到k,b的值。

(4)最終得到一次函數(shù)的表達(dá)式。

五、一次函數(shù)在生活中的應(yīng)用:

1.當(dāng)時(shí)間t肯定,距離s是速度v的一次函數(shù)。s=vt

2.當(dāng)水池抽水速度f肯定,水池中水量g是抽水時(shí)間t的一次函數(shù)。設(shè)水池中原有水量S.g=S-ft

六、常用公式:

1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)

2.求與x軸平行線段的中點(diǎn):|x1-x2|/2

3.求與y軸平行線段的中點(diǎn):|y1-y2|/2

4.求任意線段的長:√(x1-x2)^2+(y1-y2)^2(注:根號(hào)下(x1-x2)與(y1-y2)的平方和)

高中數(shù)學(xué)函數(shù)學(xué)問點(diǎn)歸納4

(1)配方法:若函數(shù)為一元二次函數(shù),則可以用這種方法求值域,關(guān)鍵在于正確化成完全平方式。

(2)換元法:常用代數(shù)或三角代換法,把所給函數(shù)代換成值域簡單確定的另一函數(shù),從而得到原函數(shù)值域,如y=ax+b+_cx-d(a,b,c,d均為常數(shù)且ac不等于0)的函數(shù)常用此法求解。

(3)判別式法:若函數(shù)為分式結(jié)構(gòu),且分母中含有未知數(shù)x,則常用此法。通常去掉分母轉(zhuǎn)化為一元二次方程,再由判別式△0,確定y的范圍,即原函數(shù)的值域

(4)不等式法:借助于重要不等式a+bab(a0)求函數(shù)的值域。用不等式法求值域時(shí),要留意均值不等式的使用條件“一正,二定,三相等。”

(5)反函數(shù)法:若原函數(shù)的值域不易直接求解,則可以考慮其反函數(shù)的定義域,依據(jù)互為反函數(shù)的兩個(gè)函數(shù)定義域與值域互換的特點(diǎn),確定原函數(shù)的值域,如y=cx+d/ax+b(a0)型函數(shù)的值域,可采納反函數(shù)法,也可用分別常數(shù)法。

(6)單調(diào)性法:首先確定函數(shù)的定義域,然后在依據(jù)其單調(diào)性求函數(shù)值域,常用到函數(shù)y=x+p/x(p0)的單調(diào)性:增區(qū)間為(-,-p)的左開右閉區(qū)間和(p,+)的左閉右開區(qū)間,減區(qū)間為(-p,0)和(0,p)

(7)數(shù)形結(jié)合法:分析函數(shù)解析式表達(dá)的集合意義,依據(jù)其圖像特點(diǎn)確定值域。

留意:

(1)用換元法求值域時(shí),仔細(xì)分析換元后變量的范圍變化;用判別式法求函數(shù)值域時(shí),肯定要留意自變量x是否屬于R。

(2)用不等式法求函數(shù)值域時(shí),需要仔細(xì)分析其等號(hào)能否成立;利用單調(diào)性求函數(shù)值域時(shí),精確?????找出其單調(diào)區(qū)間是關(guān)鍵。分段函數(shù)的值域應(yīng)分段分析,再取并集。

(3)不管用哪種方法求函數(shù)值域,都肯定要先確定其定義域,這是求函數(shù)的重要環(huán)節(jié)。

高中數(shù)學(xué)函數(shù)學(xué)問點(diǎn)歸納5

一、定義域

(高中函數(shù)定義)設(shè)A,B是兩個(gè)非空的數(shù)集,假如按某個(gè)確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A--B為集合A到集合B的一個(gè)函數(shù),記作y=f(x),x屬于集合A。其中,x叫作自變量,x的取值范圍A叫作函數(shù)的定義域。

二、值域

名稱定義

函數(shù)中,應(yīng)變量的取值范圍叫做這個(gè)函數(shù)的值域函數(shù)的值域,在數(shù)學(xué)中是函數(shù)在定義域中應(yīng)變量全部值的集合

常用的求值域的方法:

(1)化歸法;

(2)圖象法(數(shù)形結(jié)合),

(3)函數(shù)單調(diào)性法,

(4)配方法,

(5)換元法,

(6)反函數(shù)法(逆求法),

(7)判別式法,

(8)復(fù)合函數(shù)法,

(9)三角代換法,

(10)基本不等式法等

三、關(guān)于函數(shù)值域誤區(qū)

定義域、對應(yīng)法則、值域是函數(shù)構(gòu)造的三個(gè)基本元件。平常數(shù)學(xué)中,實(shí)行定義域優(yōu)先的原則,無可置疑。然而事物均具有二重性,在強(qiáng)化定義域問題的同時(shí),往往就減弱或談化了,對值域問題的探究,造成了一手硬一手軟,使同學(xué)對函數(shù)的把握時(shí)好時(shí)壞,事實(shí)上,定義域與值域二者的位置是相當(dāng)?shù)?,絕不能厚此薄皮,何況它們二者隨時(shí)處于相互轉(zhuǎn)化之中(典型的例子是互為反函數(shù)定義域與值域的相互轉(zhuǎn)化)。假如函數(shù)的值域是無限集的話,那么求函數(shù)值域不總是簡單的,反靠不等式的運(yùn)算性質(zhì)有時(shí)并不能奏效,還必需聯(lián)系函數(shù)的奇偶性、單調(diào)性、有界性、周期性來考慮函數(shù)的.取值狀況。才能獲得正確答案,從這個(gè)角度來講,求值域的問題有時(shí)比求定義域問題難,實(shí)踐證明,假如加強(qiáng)了對值域求法的討論和爭論,有利于對定義域內(nèi)函的理解,從而深化對函數(shù)本質(zhì)的熟悉。

范圍與值域相同嗎?

范圍與值域是我們在學(xué)習(xí)中常常遇到的兩個(gè)概念,很多同學(xué)經(jīng)常將它們混為一談,實(shí)際上這是兩個(gè)不同的概念。值域是全部函數(shù)值的集合(即集合中每一個(gè)元素都是這個(gè)函數(shù)的取值),而范圍則只是滿意某個(gè)條件的一些值所在的集合(即集合中的元素不肯定都滿意這個(gè)條件)。也就是說:值域是一個(gè)范圍,而范圍卻不肯定是值域。

高中數(shù)學(xué)函數(shù)學(xué)問點(diǎn)歸納6

一、函數(shù)的定義域的常用求法:

1、分式的分母不等于零;

2、偶次方根的被開方數(shù)大于等于零;

3、對數(shù)的真數(shù)大于零;

4、指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)大于零且不等于1;

5、三角函數(shù)正切函數(shù)y=tanx中x≠kπ+π/2;

6、假如函數(shù)是由實(shí)際意義確定的解析式,應(yīng)依據(jù)自變量的實(shí)際意義確定其取值范圍。

二、函數(shù)的解析式的常用求法:

1、定義法;

2、換元法;

3、待定系數(shù)法;

4、函數(shù)方程法;

5、參數(shù)法;

6、配方法

三、函數(shù)的值域的常用求法:

1、換元法;

2、配方法;

3、判別式法;

4、幾何法;

5、不等式法;

6、單調(diào)性法;

7、直接法

四、函數(shù)的最值的常用求法:

1、配方法;

2、換元法;

3、不等式法;

4、幾何法;

5、單調(diào)性法

五、函數(shù)單調(diào)性的常用結(jié)論:

1、若f(x),g(x)均為某區(qū)間上的增(減)函數(shù),則f(x)+g(x)在這個(gè)區(qū)間上也為增(減)函數(shù)

2、若f(x)為增(減)函數(shù),則-f(x)為減(增)函數(shù)

3、若f(x)與g(x)的單調(diào)性相同,則f[g(x)]是增函數(shù);若f(x)與g(x)的單調(diào)性不同,則f[g(x)]是減函數(shù)。

4、奇函數(shù)在對稱區(qū)間上的單調(diào)性相同,偶函數(shù)在對稱區(qū)間上的單調(diào)性相反。

5、常用函數(shù)的單調(diào)性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。

六、函數(shù)奇偶性的常用結(jié)論:

1、假如一個(gè)奇函數(shù)在x=0處有定義,則f(0)=0,假如一個(gè)函數(shù)y=f(x)既是奇函數(shù)又是偶函數(shù),則f(x)=0(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論