版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年萊蕪市重點中學中考數學對點突破模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,兩個轉盤A,B都被分成了3個全等的扇形,在每一扇形內均標有不同的自然數,固定指針,同時轉動轉盤A,B,兩個轉盤停止后觀察兩個指針所指扇形內的數字(若指針停在扇形的邊線上,當作指向上邊的扇形).小明每轉動一次就記錄數據,并算出兩數之和,其中“和為7”的頻數及頻率如下表:轉盤總次數10203050100150180240330450“和為7”出現頻數27101630465981110150“和為7”出現頻率0.200.350.330.320.300.300.330.340.330.33如果實驗繼續(xù)進行下去,根據上表數據,出現“和為7”的頻率將穩(wěn)定在它的概率附近,估計出現“和為7”的概率為()A.0.33 B.0.34 C.0.20 D.0.352.袋子中裝有4個黑球和2個白球,這些球的形狀、大小、質地等完全相同,在看不到球的條件下,隨機地從袋子中摸出三個球.下列事件是必然事件的是()A.摸出的三個球中至少有一個球是黑球B.摸出的三個球中至少有一個球是白球C.摸出的三個球中至少有兩個球是黑球D.摸出的三個球中至少有兩個球是白球3.在,,則的值為()A. B. C. D.4.在0,﹣2,3,四個數中,最小的數是()A.0 B.﹣2 C.3 D.5.如圖,在?ABCD中,BF平分∠ABC,交AD于點F,CE平分∠BCD,交AD于點E,若AB=6,EF=2,則BC的長為()A.8 B.10 C.12 D.146.計算a?a2的結果是()A.aB.a2C.2a2D.a37.已知點A(0,﹣4),B(8,0)和C(a,﹣a),若過點C的圓的圓心是線段AB的中點,則這個圓的半徑的最小值是()A. B. C. D.28.函數y=的自變量x的取值范圍是()A.x≠2 B.x<2 C.x≥2 D.x>29.如圖,AB是⊙O的直徑,D,E是半圓上任意兩點,連接AD,DE,AE與BD相交于點C,要使△ADC與△BDA相似,可以添加一個條件.下列添加的條件中錯誤的是()A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD10.一列快車從甲地駛往乙地,一列特快車從乙地駛往甲地,快車的速度為100千米/小時,特快車的速度為150千米/小時,甲乙兩地之間的距離為1000千米,兩車同時出發(fā),則圖中折線大致表示兩車之間的距離(千米)與快車行駛時間t(小時)之間的函數圖象是A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在平面直角坐標系中,二次函數y=ax2+c(a≠0)的圖象過正方形ABOC的三個頂點A,B,C,則ac的值是________.12.如圖,點是反比例函數圖像上的兩點(點在點左側),過點作軸于點,交于點,延長交軸于點,已知,,則的值為__________.13.若|a|=2016,則a=___________.14.如圖,點G是△ABC的重心,CG的延長線交AB于D,GA=5cm,GC=4cm,GB=3cm,將△ADG繞點D旋轉180°得到△BDE,△ABC的面積=_____cm1.15.一個不透明的袋中共有5個小球,分別為2個紅球和3個黃球,它們除顏色外完全相同,隨機摸出兩個小球,摸出兩個顏色相同的小球的概率為____.16.如圖,AB是⊙O的切線,B為切點,AC經過點O,與⊙O分別相交于點D,C,若∠ACB=30°,AB=,則陰影部分的面積是___.三、解答題(共8題,共72分)17.(8分)問題探究(1)如圖1,△ABC和△DEC均為等腰直角三角形,且∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,連接AD、BE,求的值;(2)如圖2,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=4,過點A作AM⊥AB,點P是射線AM上一動點,連接CP,做CQ⊥CP交線段AB于點Q,連接PQ,求PQ的最小值;(3)李師傅準備加工一個四邊形零件,如圖3,這個零件的示意圖為四邊形ABCD,要求BC=4cm,∠BAD=135°,∠ADC=90°,AD=CD,請你幫李師傅求出這個零件的對角線BD的最大值.圖318.(8分)已知關于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有兩個不相等的實數根.(1)求m的取值范圍;(2)若m為非負整數,且該方程的根都是無理數,求m的值.19.(8分)已知:如圖,點E是正方形ABCD的邊CD上一點,點F是CB的延長線上一點,且DE=BF.求證:EA⊥AF.20.(8分)解分式方程:21.(8分)如圖,在平行四邊形中,的平分線與邊相交于點.(1)求證;(2)若點與點重合,請直接寫出四邊形是哪種特殊的平行四邊形.22.(10分)初三(5)班綜合實踐小組去湖濱花園測量人工湖的長,如圖A、D是人工湖邊的兩座雕塑,AB、BC是湖濱花園的小路,小東同學進行如下測量,B點在A點北偏東60°方向,C點在B點北偏東45°方向,C點在D點正東方向,且測得AB=20米,BC=40米,求AD的長.(≈1.732,≈1.414,結果精確到0.01米)23.(12分)為迎接“世界華人炎帝故里尋根節(jié)”,某工廠接到一批紀念品生產訂單,按要求在15天內完成,約定這批紀念品的出廠價為每件20元,設第x天(1≤x≤15,且x為整數)每件產品的成本是p元,p與x之間符合一次函數關系,部分數據如表:天數(x)13610每件成本p(元)7.58.51012任務完成后,統(tǒng)計發(fā)現工人李師傅第x天生產的產品件數y(件)與x(天)滿足如下關系:y=,設李師傅第x天創(chuàng)造的產品利潤為W元.直接寫出p與x,W與x之間的函數關系式,并注明自變量x的取值范圍:求李師傅第幾天創(chuàng)造的利潤最大?最大利潤是多少元?任務完成后.統(tǒng)計發(fā)現平均每個工人每天創(chuàng)造的利潤為299元.工廠制定如下獎勵制度:如果一個工人某天創(chuàng)造的利潤超過該平均值,則該工人當天可獲得20元獎金.請計算李師傅共可獲得多少元獎金?24.觀察下列等式:①1×5+4=32;②2×6+4=42;③3×7+4=52;…(1)按照上面的規(guī)律,寫出第⑥個等式:_____;(2)模仿上面的方法,寫出下面等式的左邊:_____=502;(3)按照上面的規(guī)律,寫出第n個等式,并證明其成立.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
根據上表數據,出現“和為7”的頻率將穩(wěn)定在它的概率附近,估計出現“和為7”的概率即可.【詳解】由表中數據可知,出現“和為7”的概率為0.33.故選A.【點睛】本題考查了利用頻率估計概率:大量重復實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.用頻率估計概率得到的是近似值,隨實驗次數的增多,值越來越精確.2、A【解析】
根據必然事件的概念:在一定條件下,必然發(fā)生的事件叫做必然事件分析判斷即可.【詳解】A、是必然事件;B、是隨機事件,選項錯誤;C、是隨機事件,選項錯誤;D、是隨機事件,選項錯誤.故選A.3、A【解析】
本題可以利用銳角三角函數的定義求解即可.【詳解】解:tanA=,
∵AC=2BC,
∴tanA=.
故選:A.【點睛】本題考查了正切函數的概念,掌握直角三角形中角的對邊與鄰邊的比是關鍵.4、B【解析】
根據實數比較大小的法則進行比較即可.【詳解】∵在這四個數中3>0,>0,-2<0,∴-2最?。蔬xB.【點睛】本題考查的是實數的大小比較,即正實數都大于0,負實數都小于0,正實數大于一切負實數,兩個負實數絕對值大的反而小.5、B【解析】試題分析:根據平行四邊形的性質可知AB=CD,AD∥BC,AD=BC,然后根據平行線的性質和角平分線的性質可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.故選B.點睛:此題主要考查了平行四邊形的性質和等腰三角形的性質,解題關鍵是把所求線段轉化為題目中已知的線段,根據等量代換可求解.6、D【解析】a·a2=a3.故選D.7、B【解析】
首先求得AB的中點D的坐標,然后求得經過點D且垂直于直線y=-x的直線的解析式,然后求得與y=-x的交點坐標,再求得交點與D之間的距離即可.【詳解】AB的中點D的坐標是(4,-2),∵C(a,-a)在一次函數y=-x上,∴設過D且與直線y=-x垂直的直線的解析式是y=x+b,把(4,-2)代入解析式得:4+b=-2,解得:b=-1,則函數解析式是y=x-1.根據題意得:,解得:,則交點的坐標是(3,-3).則這個圓的半徑的最小值是:=.
故選:B【點睛】本題考查了待定系數法求函數的解析式,以及兩直線垂直的條件,正確理解C(a,-a),一定在直線y=-x上,是關鍵.8、D【解析】
根據被開放式的非負性和分母不等于零列出不等式即可解題.【詳解】解:∵函數y=有意義,∴x-20,即x>2故選D【點睛】本題考查了根式有意義的條件,屬于簡單題,注意分母也不能等于零是解題關鍵.9、D【解析】
解:∵∠ADC=∠ADB,∠ACD=∠DAB,∴△ADC∽△BDA,故A選項正確;∵AD=DE,∴,∴∠DAE=∠B,∴△ADC∽△BDA,∴故B選項正確;∵AD2=BD?CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故C選項正確;∵CD?AB=AC?BD,∴CD:AC=BD:AB,但∠ACD=∠ABD不是對應夾角,故D選項錯誤,故選:D.考點:1.圓周角定理2.相似三角形的判定10、C【解析】分三段討論:①兩車從開始到相遇,這段時間兩車距迅速減?。虎谙嘤龊笙蛳喾捶较蛐旭傊撂乜斓竭_甲地,這段時間兩車距迅速增加;③特快到達甲地至快車到達乙地,這段時間兩車距緩慢增大;結合圖象可得C選項符合題意.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、-1.【解析】
設正方形的對角線OA長為1m,根據正方形的性質則可得出B、C坐標,代入二次函數y=ax1+c中,即可求出a和c,從而求積.【詳解】設正方形的對角線OA長為1m,則B(﹣m,m),C(m,m),A(0,1m);把A,C的坐標代入解析式可得:c=1m①,am1+c=m②,①代入②得:am1+1m=m,解得:a=-,則ac=-1m=-1.考點:二次函數綜合題.12、【解析】
過點B作BF⊥OC于點F,易證S△OAE=S四邊形DEBF=,S△OAB=S四邊形DABF,因為,所以,,又因為AD∥BF,所以S△BCF∽S△ACD,可得BF:AD=2:5,因為S△OAD=S△OBF,所以×OD×AD=×OF×BF,即BF:AD=2:5=OD:OF,易證:S△OED∽S△OBF,S△OED:S△OBF=4:25,S△OED:S四邊形EDFB=4:21,所以S△OED=,S△OBF=S△OED+S四邊形EDFB=+=,即可得解:k=2S△OBF=.【詳解】解:過點B作BF⊥OC于點F,由反比例函數的比例系數|k|的意義可知:S△OAD=S△OBF,∴S△OAD-S△OED=S△OBF一S△OED,即S△OAE=S四邊形DEBF=,S△OAB=S四邊形DABF,∵,∴,,∵AD∥BF∴S△BCF∽S△ACD,又∵,∴BF:AD=2:5,∵S△OAD=S△OBF,∴×OD×AD=×OF×BF∴BF:AD=2:5=OD:OF易證:S△OED∽S△OBF,∴S△OED:S△OBF=4:25,S△OED:S四邊形EDFB=4:21∵S四邊形EDFB=,∴S△OED=,S△OBF=S△OED+S四邊形EDFB=+=,∴k=2S△OBF=.故答案為.【點睛】本題考查反比例函數的比例系數|k|的幾何意義,解題關鍵是熟練運用相似三角形的判定定理和性質定理.13、±1【解析】試題分析:根據零指數冪的性質(),可知|a|=1,座椅可知a=±1.14、18【解析】
三角形的重心是三條中線的交點,根據中線的性質,S△ACD=S△BCD;再利用勾股定理逆定理證明BG⊥CE,從而得出△BCD的高,可求△BCD的面積.【詳解】∵點G是△ABC的重心,∴∵GB=3,EG=GC=4,BE=GA=5,∴,即BG⊥CE,∵CD為△ABC的中線,∴∴故答案為:18.【點睛】考查三角形重心的性質,中線的性質,旋轉的性質,勾股定理逆定理等,綜合性比較強,對學生要求較高.15、【解析】
解:根據題意可得:列表如下紅1紅2黃1黃2黃3紅1紅1,紅2紅1,黃1紅1,黃2紅1,黃3紅2紅2,紅1紅2,黃1紅2,黃2紅2,黃3黃1黃1,紅1黃1,紅2黃1,黃2黃1,黃3黃2黃2,紅1黃2,紅2黃2,黃1黃2,黃3黃3黃3,紅1黃3,紅2黃3,黃1黃3,黃2共有20種所有等可能的結果,其中兩個顏色相同的有8種情況,故摸出兩個顏色相同的小球的概率為.【點睛】本題考查列表法和樹狀圖法,掌握步驟正確列表是解題關鍵.16、﹣【解析】連接OB.∵AB是⊙O切線,∴OB⊥AB,∵OC=OB,∠C=30°,∴∠C=∠OBC=30°,∴∠AOB=∠C+∠OBC=60°,在Rt△ABO中,∵∠ABO=90°,AB=,∠A=30°,∴OB=1,∴S陰=S△ABO﹣S扇形OBD=×1×﹣=﹣.三、解答題(共8題,共72分)17、(1);(2);(3)+.【解析】
(1)由等腰直角三角形的性質可得BC=3,CE=,∠ACB=∠DCE=45°,可證△ACD∽△BCE,可得=;(2)由題意可證點A,點Q,點C,點P四點共圓,可得∠QAC=∠QPC,可證△ABC∽△PQC,可得,可得當QC⊥AB時,PQ的值最小,即可求PQ的最小值;(3)作∠DCE=∠ACB,交射線DA于點E,取CE中點F,連接AC,BE,DF,BF,由題意可證△ABC∽△DEC,可得,且∠BCE=∠ACD,可證△BCE∽△ACD,可得∠BEC=∠ADC=90°,由勾股定理可求CE,DF,BF的長,由三角形三邊關系可求BD的最大值.【詳解】(1)∵∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,∴BC=3,CE=,∠ACB=∠DCE=45°,∴∠BCE=∠ACD,∵==,=,∴=,∠BCE=∠ACD,∴△ACD∽△BCE,∴=;(2)∵∠ACB=90°,∠B=30°,BC=4,∴AC=,AB=2AC=,∵∠QAP=∠QCP=90°,∴點A,點Q,點C,點P四點共圓,∴∠QAC=∠QPC,且∠ACB=∠QCP=90°,∴△ABC∽△PQC,∴,∴PQ=×QC=QC,∴當QC的長度最小時,PQ的長度最小,即當QC⊥AB時,PQ的值最小,此時QC=2,PQ的最小值為;(3)如圖,作∠DCE=∠ACB,交射線DA于點E,取CE中點F,連接AC,BE,DF,BF,,∵∠ADC=90°,AD=CD,∴∠CAD=45°,∠BAC=∠BAD-∠CAD=90°,∴△ABC∽△DEC,∴,∵∠DCE=∠ACB,∴∠BCE=∠ACD,∴△BCE∽△ACD,∴∠BEC=∠ADC=90°,∴CE=BC=2,∵點F是EC中點,∴DF=EF=CE=,∴BF==,∴BD≤DF+BF=+【點睛】本題是相似綜合題,考查了等腰直角三角形的性質,勾股定理,相似三角形的判定和性質等知識,添加恰當輔助線構造相似三角形是本題的關鍵.18、(1)m<2;(2)m=1.【解析】
(1)利用方程有兩個不相等的實數根,得△=[2(m-1)]2-4(m2-3)=-8m+2>3,然后解不等式即可;
(2)先利用m的范圍得到m=3或m=1,再分別求出m=3和m=1時方程的根,然后根據根的情況確定滿足條件的m的值.【詳解】(1)△=[2(m﹣1)]2﹣4(m2﹣3)=﹣8m+2.∵方程有兩個不相等的實數根,∴△>3.即﹣8m+2>3.解得m<2;(2)∵m<2,且m為非負整數,∴m=3或m=1,當m=3時,原方程為x2-2x-3=3,解得x1=3,x2=﹣1(不符合題意舍去),當m=1時,原方程為x2﹣2=3,解得x1=,x2=﹣,綜上所述,m=1.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=3(a≠3)的根與△=b2-4ac有如下關系:當△>3時,方程有兩個不相等的實數根;當△=3時,方程有兩個相等的實數根;當△<3時,方程無實數根.19、見解析【解析】
根據條件可以得出AD=AB,∠ABF=∠ADE=90°,從而可以得出△ABF≌△ADE,就可以得出∠FAB=∠EAD,就可以得出結論.【詳解】證明:∵四邊形ABCD是正方形,∴AB=AD,∠ABC=∠D=∠BAD=90°,∴∠ABF=90°.∵在△BAF和△DAE中,,∴△BAF≌△DAE(SAS),∴∠FAB=∠EAD,∵∠EAD+∠BAE=90°,∴∠FAB+∠BAE=90°,∴∠FAE=90°,∴EA⊥AF.20、無解【解析】
首先進行去分母,將分式方程轉化為整式方程,然后按照整式方程的求解方法進行求解,最后對所求的解進行檢驗,看是否能使分母為零.【詳解】解:兩邊同乘以(x+2)(x-2)得:x(x+2)-(x+2)(x-2)=8去括號,得:+2x-+4=8移項、合并同類項得:2x=4解得:x=2經檢驗,x=2是方程的增根∴方程無解【點睛】本題考查解分式方程,注意分式方程結果要檢驗.21、(1)見解析;(2)菱形.【解析】
(1)根據角平分線的性質可得∠ADE=∠CDE,再由平行線的性質可得AB∥CD,易得AD=AE,從而可證得結論;(2)若點與點重合,可證得AD=AB,根據鄰邊相等的平行四邊形是菱形即可作出判斷.【詳解】(1)∵DE平分∠ADC,∴∠ADE=∠CDE.∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,AD=BC,AB=CD.∵∠AED=∠CDE.∴∠ADE=∠AED.∴AD=AE.∴BC=AE.∵AB=AE+EB.∴BE+BC=CD.(2)菱形,理由如下:由(1)可知,AD=AE,∵點E與B重合,∴AD=AB.∵四邊形ABCD是平行四邊形∴平行四邊形ABCD為菱形.【點睛】本題考查了平行四邊形的性質,平行線的性質,等腰三角形的性質,菱形的性質,熟練掌握各知識是解題的關鍵.22、AD=38.28米.【解析】
過點B作BE⊥DA,BF⊥DC,垂足分別為E、F,已知AD=AE+ED,則分別求得AE、DE的長即可求得AD的長.【詳解】過點B作BE⊥DA,BF⊥DC,垂足分別為E,F,由題意知,AD⊥CD∴四邊形BFDE為矩形∴BF=ED在Rt△ABE中,AE=AB?cos∠EAB在Rt△BCF中,BF=BC?cos∠FBC∴AD=AE+BF=20?cos60°+40?cos45°=20×+40×=10+20=10+20×1.414=38.28(米).即AD=38.28米.【點睛】解一般三角形,求三角形的邊或高的問題一般可以轉化為解直角三角形的問題,解決的方法就是作高線.23、(1)W=;(2)李師傅第8天創(chuàng)造的利潤最大,最大利潤是324元;(3)李師傅共可獲得160元獎金.【解析】
(1)根據題意和表格中的數據可以求得p與x,W與x之間的函數關系式,并注明自變量x的取值范圍
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 部編版五年級語文下冊第13課《人物描寫一組》精美課件
- 施工總承包管理及協調
- 自考《勞動法(00167)》考前強化考試題庫(含答案)
- 畜牧法規(guī)知識考試題庫及答案
- 2025年正德職業(yè)技術學院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 2025年晉中職業(yè)技術學院高職單招語文2018-2024歷年參考題庫頻考點含答案解析
- 2025年攀枝花攀西職業(yè)學院高職單招職業(yè)適應性測試近5年??及鎱⒖碱}庫含答案解析
- 中班數學主題活動策劃方案模板五篇
- 藥品運輸合同
- 林業(yè)承包合同標準范本
- 2025民政局離婚協議書范本(民政局官方)4篇
- 2024年03月四川農村商業(yè)聯合銀行信息科技部2024年校園招考300名工作人員筆試歷年參考題庫附帶答案詳解
- 小學一年級數學上冊口算練習題總匯
- 潤滑油知識-液壓油
- 2024年江蘇省中醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 臨床思維能力培養(yǎng)
- 人教版高中物理必修第三冊第十章靜電場中的能量10-1電勢能和電勢練習含答案
- 《中國香文化》課件
- 2024簡易租房合同下載打印
- 阿基米德課件
- GB/T 18103-2022實木復合地板
評論
0/150
提交評論