河南省鄭州一中汝州實(shí)驗(yàn)中學(xué)2022年中考數(shù)學(xué)猜題卷含解析_第1頁
河南省鄭州一中汝州實(shí)驗(yàn)中學(xué)2022年中考數(shù)學(xué)猜題卷含解析_第2頁
河南省鄭州一中汝州實(shí)驗(yàn)中學(xué)2022年中考數(shù)學(xué)猜題卷含解析_第3頁
河南省鄭州一中汝州實(shí)驗(yàn)中學(xué)2022年中考數(shù)學(xué)猜題卷含解析_第4頁
河南省鄭州一中汝州實(shí)驗(yàn)中學(xué)2022年中考數(shù)學(xué)猜題卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

河南省鄭州一中汝州實(shí)驗(yàn)中學(xué)2022年中考數(shù)學(xué)猜題卷注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.將一副三角尺(在中,,,在中,,)如圖擺放,點(diǎn)為的中點(diǎn),交于點(diǎn),經(jīng)過點(diǎn),將繞點(diǎn)順時(shí)針方向旋轉(zhuǎn)(),交于點(diǎn),交于點(diǎn),則的值為()A. B. C. D.2.如圖,直立于地面上的電線桿AB,在陽光下落在水平地面和坡面上的影子分別是BC、CD,測得BC=6米,CD=4米,∠BCD=150°,在D處測得電線桿頂端A的仰角為30°,則電線桿AB的高度為()A. B. C. D.3.如圖數(shù)軸的A、B、C三點(diǎn)所表示的數(shù)分別為a、b、c.若|a﹣b|=3,|b﹣c|=5,且原點(diǎn)O與A、B的距離分別為4、1,則關(guān)于O的位置,下列敘述何者正確?()A.在A的左邊 B.介于A、B之間C.介于B、C之間 D.在C的右邊4.如圖,在Rt△ABC中,∠C=90°,∠CAB的平分線交BC于D,DE是AB的垂直平分線,垂足為E,若BC=3,則DE的長為()A.1 B.2 C.3 D.45.如圖,一艘海輪位于燈塔P的南偏東45°方向,距離燈塔60nmile的A處,它沿正北方向航行一段時(shí)間后,到達(dá)位于燈塔P的北偏東30°方向上的B處,這時(shí),B處與燈塔P的距離為()A.60nmile B.60nmile C.30nmile D.30nmile6.如圖,A、B、C、D是⊙O上的四點(diǎn),BD為⊙O的直徑,若四邊形ABCO是平行四邊形,則∠ADB的大小為()A.30° B.45° C.60° D.75°7.如圖,A、B、C、D四個(gè)點(diǎn)均在⊙O上,∠AOD=70°,AO∥DC,則∠B的度數(shù)為()A.40° B.45° C.50° D.55°8.如圖,某小區(qū)計(jì)劃在一塊長為31m,寬為10m的矩形空地上修建三條同樣寬的道路,剩余的空地上種植草坪,使草坪的面積為570m1.若設(shè)道路的寬為xm,則下面所列方程正確的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=5709.下列計(jì)算正確的是()A.2x+3x=5x B.2x?3x=6x C.(x3)2=5 D.x3﹣x2=x10.為了大力宣傳節(jié)約用電,某小區(qū)隨機(jī)抽查了10戶家庭的月用電量情況,統(tǒng)計(jì)如下表,關(guān)于這10戶家庭的月用電量說法正確的是()月用電量(度)2530405060戶數(shù)12421A.極差是3 B.眾數(shù)是4 C.中位數(shù)40 D.平均數(shù)是20.5二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.某校為了解本校九年級學(xué)生足球訓(xùn)練情況,隨機(jī)抽查該年級若干名學(xué)生進(jìn)行測試,然后把測試結(jié)果分為4個(gè)等級:A、B、C、D,并將統(tǒng)計(jì)結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖.該年級共有700人,估計(jì)該年級足球測試成績?yōu)镈等的人數(shù)為_____人.12.a(chǎn)、b、c是實(shí)數(shù),點(diǎn)A(a+1、b)、B(a+2,c)在二次函數(shù)y=x2﹣2ax+3的圖象上,則b、c的大小關(guān)系是b____c(用“>”或“<”號填空)13.如圖,在△ABC中,∠ACB=90°,點(diǎn)D是CB邊上一點(diǎn),過點(diǎn)D作DE⊥AB于點(diǎn)E,點(diǎn)F是AD的中點(diǎn),連結(jié)EF、FC、CE.若AD=2,∠CFE=90°,則CE=_____.14.正多邊形的一個(gè)外角是,則這個(gè)多邊形的內(nèi)角和的度數(shù)是___________________.15.如圖,在等腰直角三角形ABC中,∠C=90°,點(diǎn)D為AB的中點(diǎn),已知扇形EAD和扇形FBD的圓心分別為點(diǎn)A、點(diǎn)B,且AB=4,則圖中陰影部分的面積為_____(結(jié)果保留π).16.如圖,圓O的直徑AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的長為________.三、解答題(共8題,共72分)17.(8分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點(diǎn)D,切線DE交AC于點(diǎn)E.(1)求證:∠A=∠ADE;(2)若AD=8,DE=5,求BC的長.18.(8分)我們來定義一種新運(yùn)算:對于任意實(shí)數(shù)x、y,“※”為a※b=(a+1)(b+1)﹣1.(1)計(jì)算(﹣3)※9(2)嘉琪研究運(yùn)算“※”之后認(rèn)為它滿足交換律,你認(rèn)為她的判斷(正確、錯(cuò)誤)(3)請你幫助嘉琪完成她對運(yùn)算“※”是否滿足結(jié)合律的證明.19.(8分)如圖,△ABC,△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)E在AB上,求證:△CDA≌△CEB.20.(8分)如圖,在平面直角坐標(biāo)系中,四邊形的頂點(diǎn)是坐標(biāo)原點(diǎn),點(diǎn)在第一象限,點(diǎn)在第四象限,點(diǎn)在軸的正半軸上,且.(1)求點(diǎn)和點(diǎn)的坐標(biāo);(2)點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn)(點(diǎn)不與點(diǎn)重合),以每秒個(gè)單位的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),過點(diǎn)的直線與軸平行,直線交邊或邊于點(diǎn),交邊或邊于點(diǎn),設(shè)點(diǎn).運(yùn)動(dòng)時(shí)間為,線段的長度為,已知時(shí),直線恰好過點(diǎn).①當(dāng)時(shí),求關(guān)于的函數(shù)關(guān)系式;②點(diǎn)出發(fā)時(shí)點(diǎn)也從點(diǎn)出發(fā),以每秒個(gè)單位的速度向點(diǎn)運(yùn)動(dòng),點(diǎn)停止時(shí)點(diǎn)也停止.設(shè)的面積為,求與的函數(shù)關(guān)系式;③直接寫出②中的最大值是.21.(8分)小明和小亮為下周日計(jì)劃了三項(xiàng)活動(dòng),分別是看電影(記為A)、去郊游(記為B)、去圖書館(記為C).他們各自在這三項(xiàng)活動(dòng)中任選一個(gè),每項(xiàng)活動(dòng)被選中的可能性相同.(1)小明選擇去郊游的概率為多少;(2)請用樹狀圖或列表法求小明和小亮的選擇結(jié)果相同的概率.22.(10分)為了提高服務(wù)質(zhì)量,某賓館決定對甲、乙兩種套房進(jìn)行星級提升,已知甲種套房提升費(fèi)用比乙種套房提升費(fèi)用少3萬元,如果提升相同數(shù)量的套房,甲種套房費(fèi)用為625萬元,乙種套房費(fèi)用為700萬元.(1)甲、乙兩種套房每套提升費(fèi)用各多少萬元?(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費(fèi)用最少?(3)在(2)的條件下,根據(jù)市場調(diào)查,每套乙種套房的提升費(fèi)用不會改變,每套甲種套房提升費(fèi)用將會提高a萬元(a>0),市政府如何確定方案才能使費(fèi)用最少?23.(12分)如圖,在Rt△ABC中,∠C=90°,AC,tanB,半徑為2的⊙C分別交AC,BC于點(diǎn)D、E,得到DE?。笞C:AB為⊙C的切線.求圖中陰影部分的面積.24.為緩解交通壓力,市郊某地正在修建地鐵站,擬同步修建地下停車庫.如圖是停車庫坡道入口的設(shè)計(jì)圖,其中MN是水平線,MN∥AD,AD⊥DE,CF⊥AB,垂足分別為D,F(xiàn),坡道AB的坡度=1:3,AD=9米,點(diǎn)C在DE上,CD=0.5米,CD是限高標(biāo)志牌的高度(標(biāo)志牌上寫有:限高米).如果進(jìn)入該車庫車輛的高度不能超過線段CF的長,則該停車庫限高多少米?(結(jié)果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈3.16)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

先根據(jù)直角三角形斜邊上的中線性質(zhì)得CD=AD=DB,則∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得∠PDM=∠CDN=α,于是可判斷△PDM∽△CDN,得到=,然后在Rt△PCD中利用正切的定義得到tan∠PCD=tan30°=,于是可得=.【詳解】∵點(diǎn)D為斜邊AB的中點(diǎn),∴CD=AD=DB,∴∠ACD=∠A=30°,∠BCD=∠B=60°,∵∠EDF=90°,∴∠CPD=60°,∴∠MPD=∠NCD,∵△EDF繞點(diǎn)D順時(shí)針方向旋轉(zhuǎn)α(0°<α<60°),∴∠PDM=∠CDN=α,∴△PDM∽△CDN,∴=,在Rt△PCD中,∵tan∠PCD=tan30°=,∴=tan30°=.故選:C.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了相似三角形的判定與性質(zhì).2、B【解析】

延長AD交BC的延長線于E,作DF⊥BE于F,∵∠BCD=150°,∴∠DCF=30°,又CD=4,∴DF=2,CF==2,由題意得∠E=30°,∴EF=,∴BE=BC+CF+EF=6+4,∴AB=BE×tanE=(6+4)×=(2+4)米,即電線桿的高度為(2+4)米.點(diǎn)睛:本題考查的是解直角三角形的應(yīng)用-仰角俯角問題,掌握仰角俯角的概念、熟記銳角三角函數(shù)的定義是解題的關(guān)鍵.3、C【解析】分析:由A、B、C三點(diǎn)表示的數(shù)之間的關(guān)系結(jié)合三點(diǎn)在數(shù)軸上的位置即可得出b=a+3,c=b+5,再根據(jù)原點(diǎn)O與A、B的距離分別為1、1,即可得出a=±1、b=±1,結(jié)合a、b、c間的關(guān)系即可求出a、b、c的值,由此即可得出結(jié)論.解析:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原點(diǎn)O與A、B的距離分別為1、1,∴a=±1,b=±1,∵b=a+3,∴a=﹣1,b=﹣1,∵c=b+5,∴c=1.∴點(diǎn)O介于B、C點(diǎn)之間.故選C.點(diǎn)睛:本題考查了數(shù)值以及絕對值,解題的關(guān)鍵是確定a、b、c的值.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時(shí),根據(jù)數(shù)軸上點(diǎn)的位置關(guān)系分別找出各點(diǎn)代表的數(shù)是關(guān)鍵.4、A【解析】試題分析:由角平分線和線段垂直平分線的性質(zhì)可求得∠B=∠CAD=∠DAB=30°,∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1考點(diǎn):線段垂直平分線的性質(zhì)5、B【解析】

如圖,作PE⊥AB于E.在Rt△PAE中,∵∠PAE=45°,PA=60nmile,∴PE=AE=×60=nmile,在Rt△PBE中,∵∠B=30°,∴PB=2PE=nmile.故選B.6、A【解析】

解:∵四邊形ABCO是平行四邊形,且OA=OC,∴四邊形ABCO是菱形,∴AB=OA=OB,∴△OAB是等邊三角形,∴∠AOB=60°,∵BD是⊙O的直徑,∴點(diǎn)B、D、O在同一直線上,∴∠ADB=∠AOB=30°故選A.7、D【解析】試題分析:如圖,連接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故選D.考點(diǎn):1、平行線的性質(zhì);2、圓周角定理;3等腰三角形的性質(zhì)8、A【解析】六塊矩形空地正好能拼成一個(gè)矩形,設(shè)道路的寬為xm,根據(jù)草坪的面積是570m1,即可列出方程:(31?1x)(10?x)=570,故選A.9、A【解析】

依據(jù)合并同類項(xiàng)法則、單項(xiàng)式乘單項(xiàng)式法則、積的乘方法則進(jìn)行判斷即可.【詳解】A、2x+3x=5x,故A正確;B、2x?3x=6x2,故B錯(cuò)誤;C、(x3)2=x6,故C錯(cuò)誤;D、x3與x2不是同類項(xiàng),不能合并,故D錯(cuò)誤.故選A.【點(diǎn)睛】本題主要考查的是整式的運(yùn)算,熟練掌握相關(guān)法則是解題的關(guān)鍵.10、C【解析】

極差、中位數(shù)、眾數(shù)、平均數(shù)的定義和計(jì)算公式分別對每一項(xiàng)進(jìn)行分析,即可得出答案.【詳解】解:A、這組數(shù)據(jù)的極差是:60-25=35,故本選項(xiàng)錯(cuò)誤;

B、40出現(xiàn)的次數(shù)最多,出現(xiàn)了4次,則眾數(shù)是40,故本選項(xiàng)錯(cuò)誤;

C、把這些數(shù)從小到大排列,最中間兩個(gè)數(shù)的平均數(shù)是(40+40)÷2=40,則中位數(shù)是40,故本選項(xiàng)正確;

D、這組數(shù)據(jù)的平均數(shù)(25+30×2+40×4+50×2+60)÷10=40.5,故本選項(xiàng)錯(cuò)誤;

故選:C.【點(diǎn)睛】本題考查了極差、平均數(shù)、中位數(shù)、眾數(shù)的知識,解答本題的關(guān)鍵是掌握各知識點(diǎn)的概念.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1【解析】試題解析:∵總?cè)藬?shù)為14÷28%=50(人),∴該年級足球測試成績?yōu)镈等的人數(shù)為(人).故答案為:1.12、<【解析】試題分析:將二次函數(shù)y=x2-2ax+3轉(zhuǎn)換成y=(x-a)2-a2+3,則它的對稱軸是x=a,拋物線開口向上,所以在對稱軸右邊y隨著x的增大而增大,點(diǎn)A點(diǎn)B均在對稱軸右邊且a+1<a+2,所以b<c.13、【解析】

根據(jù)直角三角形的中點(diǎn)性質(zhì)結(jié)合勾股定理解答即可.【詳解】解:,點(diǎn)F是AD的中點(diǎn),.故答案為:.【點(diǎn)睛】此題重點(diǎn)考查學(xué)生對勾股定理的理解。熟練掌握勾股定理是解題的關(guān)鍵.14、540°【解析】

根據(jù)多邊形的外角和為360°,因此可以求出多邊形的邊數(shù)為360°÷72°=5,根據(jù)多邊形的內(nèi)角和公式(n-2)·180°,可得(5-2)×180°=540°.考點(diǎn):多邊形的內(nèi)角和與外角和15、4﹣π【解析】

由在等腰直角三角形ABC中,∠C=90°,AB=4,可求得直角邊AC與BC的長,繼而求得△ABC的面積,又由扇形的面積公式求得扇形EAD和扇形FBD的面積,繼而求得答案.【詳解】解:∵在等腰直角三角形ABC中,∠C=90°,AB=4,∴AC=BC=AB?sin45°=AB=2,∴S△ABC=AC?BC=4,∵點(diǎn)D為AB的中點(diǎn),∴AD=BD=AB=2,∴S扇形EAD=S扇形FBD=×π×22=π,∴S陰影=S△ABC﹣S扇形EAD﹣S扇形FBD=4﹣π.故答案為:4﹣π.【點(diǎn)睛】此題考查了等腰直角三角形的性質(zhì)以及扇形的面積.注意S陰影=S△ABC﹣S扇形EAD﹣S扇形FBD.16、【解析】試題分析:因?yàn)镺C=OA,所以∠ACO=,所以∠AOC=45°,又直徑垂直于弦,,所以CE=,所以CD=2CE=.考點(diǎn):1.解直角三角形、2.垂徑定理.三、解答題(共8題,共72分)17、(1)見解析(2)7.5【解析】

(1)只要證明∠A+∠B=90°,∠ADE+∠B=90°即可解決問題;(2)首先證明AC=2DE=10,在Rt△ADC中,求得DC=6,設(shè)BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2-102,可得x2+62=(x+8)2-102,解方程即可解決問題.【詳解】(1)證明:連接OD,∵DE是切線,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠A=∠ADE;(2)連接CD,∵∠A=∠ADE∴AE=DE,∵BC是⊙O的直徑,∠ACB=90°,∴EC是⊙O的切線,∴ED=EC,∴AE=EC,∵DE=5,∴AC=2DE=10,在Rt△ADC中,DC=,設(shè)BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2-102,∴x2+62=(x+8)2-102,解得x=4.5,∴BC=【點(diǎn)睛】此題主要考查圓的切線問題,解題的關(guān)鍵是熟知切線的性質(zhì).18、(1)-21;(2)正確;(3)運(yùn)算“※”滿足結(jié)合律【解析】

(1)根據(jù)新定義運(yùn)算法則即可求出答案.(2)只需根據(jù)整式的運(yùn)算證明法則a※b=b※a即可判斷.(3)只需根據(jù)整式的運(yùn)算法則證明(a※b)※c=a※(b※c)即可判斷.【詳解】(1)(-3)※9=(-3+1)(9+1)-1=-21(2)a※b=(a+1)(b+1)-1b※a=(b+1)(a+1)-1,∴a※b=b※a,故滿足交換律,故她判斷正確;(3)由已知把原式化簡得a※b=(a+1)(b+1)-1=ab+a+b∵(a※b)※c=(ab+a+b)※c=(ab+a+b+1)(c+1)-1=abc+ac+ab+bc+a+b+c∵a※(b※c)=a(bcv+b+c)+(bc+b+c)+a=abc+ac+ab+bc+a+b+c∴(a※b)※c=a※(b※c)∴運(yùn)算“※”滿足結(jié)合律【點(diǎn)睛】本題考查新定義運(yùn)算,解題的關(guān)鍵是正確理解新定義運(yùn)算的法則,本題屬于中等題型.19、見解析.【解析】試題分析:根據(jù)等腰直角三角形的性質(zhì)得出CE=CD,BC=AC,再利用全等三角形的判定證明即可.試題解析:證明:∵△ABC、△CDE均為等腰直角三角形,∠ACB=∠DCE=90°,∴CE=CD,BC=AC,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,∴∠ECB=∠DCA,在△CDA與△CEB中,BC=AC∠ECB=∠DAC∴△CDA≌△CEB.考點(diǎn):全等三角形的判定;等腰直角三角形.20、(1);(2)①;②當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;③.【解析】

(1)根據(jù)等腰直角三角形的性質(zhì)即可解決問題;(2)首先求出直線OA、AB、OC、BC的解析式.①求出R、Q的坐標(biāo),利用兩點(diǎn)間距離公式即可解決問題;②分三種情形分別求解即可解決問題;③利用②中的函數(shù),利用配方法求出最值即可;【詳解】解:(1)由題意是等腰直角三角形,(2),線直的解析式為,直線的解析式時(shí),直線恰好過點(diǎn).,直線的解析式為,直線的解析式為①當(dāng)時(shí),,②當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),③當(dāng)時(shí),,時(shí),的最大值為.當(dāng)時(shí),.時(shí),的值最大,最大值為.當(dāng)時(shí),,時(shí),的最大值為,綜上所述,最大值為故答案為.【點(diǎn)睛】本題考查四邊形綜合題、一次函數(shù)的應(yīng)用、二次函數(shù)的應(yīng)用、等腰直角三角形的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會構(gòu)建一次函數(shù)或二次函數(shù)解決實(shí)際問題,屬于中考壓軸題.21、(1)13;(2)1【解析】

(1)利用概率公式直接計(jì)算即可;(2)首先根據(jù)題意列表,然后求得所有等可能的結(jié)果與小明和小亮選擇結(jié)果相同的情況,再利用概率公式即可求得答案【詳解】(1)∵小明分別是從看電影(記為A)、去郊游(記為B)、去圖書館(記為C)的一個(gè)景點(diǎn)去游玩,∴小明選擇去郊游的概率=;(2)列表得:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由列表可知兩人選擇的方案共有9種等可能的結(jié)果,其中選擇同種方案有3種,所以小明和小亮的選擇結(jié)果相同的概率==.【點(diǎn)睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時(shí)要注意此題是放回實(shí)驗(yàn)還是不放回實(shí)驗(yàn).用到的知識點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.22、(1)甲:25萬元;乙:28萬元;(2)三種方案;甲種套房提升50套,乙種套房提升30套費(fèi)用最少;(3)當(dāng)a=3時(shí),三種方案的費(fèi)用一樣,都是2240萬元;當(dāng)a>3時(shí),取m=48時(shí)費(fèi)用最省;當(dāng)0<a<3時(shí),取m=50時(shí)費(fèi)用最省.【解析】試題分析:(1)設(shè)甲種套房每套提升費(fèi)用為x萬元,根據(jù)題意建立方程求出其解即可;(2)設(shè)甲種套房提升m套,那么乙種套房提升(80-m)套,根據(jù)條件建立不等式組求出其解就可以求出提升方案,再表示出總費(fèi)用與m之間的函數(shù)關(guān)系式,根據(jù)一次函數(shù)的性質(zhì)就可以求出結(jié)論;(3)根據(jù)(2)表示出W與m之間的關(guān)系式,由一次函數(shù)的性質(zhì)分類討論就可以得出結(jié)論.(1)設(shè)甲種套房每套提升費(fèi)用為x萬元,依題意,得625解得:x=25經(jīng)檢驗(yàn):x=25符合題意,x+3=28;答:甲,乙兩種套房每套提升費(fèi)用分別為25萬元,28萬元.(2)設(shè)甲種套房提升套,那么乙種套房提升(m-48)套,依題意,得解得:48≤m≤50即m=48或49或50,所以有三種方案分別是:方案一:甲種套房提升48套,乙種套房提升32套.方案二:甲種套

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論