版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
-.z.目錄自動(dòng)控制系統(tǒng)的基本原理控制系統(tǒng)的工作原理和基本要求控制系統(tǒng)的基本類型典型控制信號(hào)控制理論的容和方法控制系統(tǒng)的數(shù)學(xué)模型機(jī)械系統(tǒng)的數(shù)學(xué)模型液壓系統(tǒng)的數(shù)學(xué)模型電氣系統(tǒng)的數(shù)學(xué)模型線性控制系統(tǒng)的卷積關(guān)系式拉氏變換傅氏變換拉普拉斯變換拉普拉斯變換的基本定理拉普拉斯逆變換第四章傳遞函數(shù)第一節(jié)傳遞函數(shù)的概念與性質(zhì)線性控制系統(tǒng)的典型環(huán)節(jié)系統(tǒng)框圖及其運(yùn)算多變量系統(tǒng)的傳遞函數(shù)第五章時(shí)間響應(yīng)分析概述單位脈沖輸入的時(shí)間響應(yīng)單位階躍輸入的時(shí)間響應(yīng)高階系統(tǒng)時(shí)間響應(yīng)頻率響應(yīng)分析諧和輸入系統(tǒng)的定態(tài)響應(yīng)頻率特性極坐標(biāo)圖頻率特性的對(duì)數(shù)坐標(biāo)圖由頻率特性的實(shí)驗(yàn)曲線求系統(tǒng)傳遞函數(shù)控制系統(tǒng)的穩(wěn)定性穩(wěn)定性概念勞斯判據(jù)乃奎斯特判據(jù)對(duì)數(shù)坐標(biāo)圖的穩(wěn)定性判據(jù)控制系統(tǒng)的偏差控制系統(tǒng)的偏差概念輸入引起的定態(tài)偏差輸入引起的動(dòng)態(tài)偏差第九章控制系統(tǒng)的設(shè)計(jì)和校正第一節(jié)綜述希望對(duì)數(shù)幅頻特性曲線的繪制校正方法與校正環(huán)節(jié)控制系統(tǒng)的增益調(diào)整控制系統(tǒng)的串聯(lián)校正控制系統(tǒng)的局部反饋校正控制系統(tǒng)的順饋校正自動(dòng)控制系統(tǒng)的基本原理定義:在沒(méi)有人的直接參與下,利用控制器使控制對(duì)象的*一物理量準(zhǔn)確地按照預(yù)期的規(guī)律運(yùn)行??刂葡到y(tǒng)的工作原理和基本要求控制系統(tǒng)舉例與結(jié)構(gòu)方框圖一個(gè)人工控制的恒溫箱,希望的爐水溫度為100C°,利用表示函數(shù)功能的方塊、信號(hào)線,畫(huà)出結(jié)構(gòu)方塊圖。圖1人通過(guò)眼睛觀察溫度計(jì)來(lái)獲得爐實(shí)際溫度,通過(guò)大腦分析、比較,利用手和鍬上煤炭助燃。圖2圖示為液面高度控制系統(tǒng)原理圖。試畫(huà)出控制系統(tǒng)方塊圖和相應(yīng)的人工操縱的液面控制系統(tǒng)方塊圖。解:浮子作為液面高度的反饋物,自動(dòng)控制器通過(guò)比較實(shí)際的液面高度與希望的液面高度,調(diào)解氣動(dòng)閥門(mén)的開(kāi)合度,對(duì)誤差進(jìn)行修正,可保持液面高度穩(wěn)定。圖3圖4圖5結(jié)構(gòu)方塊圖說(shuō)明:1.信號(hào)線:帶有箭頭的直線(可標(biāo)時(shí)間或象函數(shù))U(t),U(s);2.引用線:表示信號(hào)引出或測(cè)量的位置;3.比較點(diǎn):對(duì)兩個(gè)以上的同性質(zhì)信號(hào)的加減運(yùn)算環(huán)節(jié);4.方框:代表系統(tǒng)中的元件或環(huán)節(jié)。方塊圖中要注明元件或環(huán)節(jié)的名稱,函數(shù)框圖要寫(xiě)明函數(shù)表達(dá)式。二.控制系統(tǒng)的組成1.給定環(huán)節(jié):給出輸入信號(hào),確定被控制量的目標(biāo)值。2.比較環(huán)節(jié):將控制信號(hào)與反饋信號(hào)進(jìn)行比較,得出偏差值。3.放大環(huán)節(jié):將偏差信號(hào)放大并進(jìn)行必要的能量轉(zhuǎn)換。4.執(zhí)行環(huán)節(jié):各種各類。5.被控對(duì)象:機(jī)器、設(shè)備、過(guò)程。6.測(cè)量環(huán)節(jié):測(cè)量被控信號(hào)并產(chǎn)生反饋信號(hào)。7.校正環(huán)節(jié):改善性能的特定環(huán)節(jié)。三.控制系統(tǒng)特點(diǎn)與要求1.目的:使被控對(duì)象的*一或*些物理量按預(yù)期的規(guī)律變化。2.過(guò)程:即“測(cè)量——對(duì)比——補(bǔ)償”。或“檢測(cè)偏差——糾正偏差”。3.基本要求:穩(wěn)定性系統(tǒng)必須是穩(wěn)定的,不能震蕩;快速性接近目標(biāo)的快慢程度,過(guò)渡過(guò)程要?。粶?zhǔn)確性控制系統(tǒng)的基本類型1.開(kāi)環(huán)變量控制系統(tǒng)(僅有前向通道)圖62.閉環(huán)變量控制系統(tǒng)開(kāi)環(huán)系統(tǒng):優(yōu)點(diǎn):結(jié)構(gòu)簡(jiǎn)單、穩(wěn)定性能好;缺點(diǎn):不能糾偏,精度低。閉環(huán)系統(tǒng):與上相反。第三節(jié)典型控制信號(hào)輸入信號(hào)是多種多樣的,為了對(duì)各種控制系統(tǒng)的性能進(jìn)行統(tǒng)一的評(píng)價(jià),通常選定幾種外作用形式作為典型外作用信號(hào),并提出統(tǒng)一的性能指標(biāo),作為評(píng)價(jià)標(biāo)準(zhǔn)。1.階躍信號(hào)*(t)=0t<0*(t)=At≥0圖7當(dāng)A=1時(shí),稱為單位階躍信號(hào),寫(xiě)為1(t)。階躍信號(hào)是一種對(duì)系統(tǒng)工作最不利的外作用形式。例如,電源突然跳動(dòng),負(fù)載突然增加等。因此,在研究過(guò)渡過(guò)程性能時(shí)通常都選擇階躍函數(shù)為典型外作用,相應(yīng)的過(guò)渡過(guò)程稱為階躍響應(yīng)。2.脈沖函數(shù)數(shù)學(xué)表達(dá)式*(t)=A/T0≤t≤T*(t)=0其它圖8脈沖函數(shù)的強(qiáng)度為A,即圖形面積。單位脈沖函數(shù)(δ函數(shù))定義為δ(t)=1(t)性質(zhì)有:δ(t)=0t≠0δ(t)=∞t=0且圖9強(qiáng)度為A的脈沖函數(shù)*(t)也可寫(xiě)為*(t)=Aδ(t)必須指出,脈沖函數(shù)δ(t)在現(xiàn)實(shí)中是不存在的,它只有數(shù)學(xué)上的意義,但它又是很重要的很有效的數(shù)學(xué)工具。3.斜坡函數(shù)(恒速信號(hào))*(t)=Att≥0*(t)=0t<0圖10在研究飛機(jī)系統(tǒng)時(shí),常用恒速信號(hào)作為外作用來(lái)評(píng)價(jià)過(guò)渡過(guò)程。4.恒加速信號(hào)*(t)=At2/2t≥0*(t)=0t<0圖11在研究衛(wèi)星、航天技術(shù)的系統(tǒng)時(shí),常用恒加速信號(hào)作為外作用來(lái)評(píng)價(jià)過(guò)渡過(guò)程。5.正弦函數(shù)(諧波函數(shù)、諧和信號(hào))*(t)=*m.sin(ωt+φ)t≥0*(t)=0t<0-圖126.延時(shí)函數(shù)(信號(hào))f(t)=*(t-τ)t≥τf(t)=0t<0圖137.隨機(jī)信號(hào)(使用白噪聲信號(hào)代替)第四節(jié)控制理論的研究容和方法一.經(jīng)典控制理論1.主要容:分析——掌握系統(tǒng)的特性,進(jìn)行系統(tǒng)性能的改善;實(shí)驗(yàn)——對(duì)系統(tǒng)特性和改善措施進(jìn)行測(cè)試;綜合——按照給定的靜態(tài)、動(dòng)態(tài)指標(biāo)設(shè)計(jì)系統(tǒng)。2.方法時(shí)域法——以典型信號(hào)輸入,分析輸出量隨時(shí)間變化的情況;頻域法——以諧和信號(hào)輸入,分析輸出量隨頻率變化的情況;根軌跡法——根據(jù)系統(tǒng)的特征方程式的根,隨系統(tǒng)參數(shù)的變化規(guī)律來(lái)研究系統(tǒng)(又稱圖解法)。二.現(xiàn)代控制理論1.引入狀態(tài)空間概念;2.動(dòng)態(tài)最佳控制;3.靜態(tài)最優(yōu)控制;4.自適應(yīng)和自學(xué)習(xí)系統(tǒng)。圖14瓦特調(diào)速器控制系統(tǒng)的數(shù)學(xué)模型為了確定控制系統(tǒng)部各物理量之間定量關(guān)系,必須建立數(shù)學(xué)模型。這一章中心問(wèn)題是如何從控制系統(tǒng)實(shí)體中抽象出數(shù)學(xué)模型。第一節(jié)機(jī)械系統(tǒng)的數(shù)學(xué)模型1.機(jī)械平移系統(tǒng)(應(yīng)用牛頓定律)∑F=0,F=mF(t)-c-k*=m或F(t)-Fc(t)-Fk(t)=mFc(t)=阻尼器產(chǎn)生的阻尼力,為c(t)Fk(t)=彈性恢復(fù)力,為k*(t)整理:m+c+k*=F(t)2.機(jī)械旋轉(zhuǎn)系統(tǒng)J(t)+c(t)+k(t)=M(t)J—轉(zhuǎn)動(dòng)慣量c—阻尼系數(shù)K—?jiǎng)偠认禂?shù)圖14圖153.機(jī)械傳動(dòng)系統(tǒng)參數(shù)的歸算機(jī)械系統(tǒng)的運(yùn)動(dòng)形式:旋轉(zhuǎn)運(yùn)動(dòng)、直線運(yùn)動(dòng)。機(jī)械系統(tǒng)的組成元件:齒輪、軸、軸承、絲杠、螺母、滑塊等。對(duì)一個(gè)復(fù)雜的大系統(tǒng),必須把各部件參數(shù)歸算到同一部件上。在這個(gè)部件的慣性力、阻尼力、彈性恢復(fù)力稱為當(dāng)量參數(shù)。如何歸算?采用單因素法。3—1慣性參數(shù)的歸算1.轉(zhuǎn)動(dòng)慣量的歸算將圖示系統(tǒng)中的J1、J2和J3歸算到a軸上。圖16列各軸力矩平衡方程式:a軸:M=J1+Mb-ab軸:Ma-b=J2+Mc-bc軸:Mb-c=J3Mb-a——負(fù)載力矩;Ma-b——是b軸的主動(dòng)(驅(qū)動(dòng))力矩。列關(guān)系式:==,同理力相等關(guān)系由線速度相等關(guān)系:ω1=ω2得,同理,代入各關(guān)系式,得M(t)=M=[J1+J2()2+J3()2]=Ja∑Ja∑—稱為歸算到a軸上的歸算轉(zhuǎn)動(dòng)慣量。推之,對(duì)于系統(tǒng)有n個(gè)軸,歸算到a軸時(shí),Ja∑=Ui—是從a軸到第i軸的總速比,即主動(dòng)齒輪齒數(shù)積/被動(dòng)齒輪齒數(shù)積。2.移動(dòng)質(zhì)量歸算為轉(zhuǎn)動(dòng)慣量列運(yùn)動(dòng)平衡方程式絲杠:M=J+M1滑塊:F=m=F軸式中:M1是滑塊作用于絲杠的力矩;F軸是絲杠作用于滑塊的軸向力。為求M與F之間的關(guān)系,列關(guān)系式,把絲杠按πD展成平面。tgα=F周/F軸=S/πD由關(guān)系式F周=M1,則F軸=F==根據(jù)運(yùn)動(dòng)關(guān)系==代入到M=J+M1中,整理后得M=[J+m()2]=J∑J∑=J+m()2圖17圖18第二節(jié)液壓系統(tǒng)的數(shù)學(xué)模型分析思路(見(jiàn)圖19):劃分為兩個(gè)環(huán)節(jié)?;y:輸入量*i(t)輸出量θ(t)(中間變量)液壓缸:輸入量θ(t)輸出量*o(t)建立各元件方程式圖191、滑閥流量方程式θ(t)=f[*i(t),],其中=壓強(qiáng)差流量θ(t)是閥芯位移*i(t)函數(shù),同時(shí)又是負(fù)載壓強(qiáng)差的函數(shù),具有非線性關(guān)系。如果把非線性問(wèn)題線性化,這是考慮在額定工作點(diǎn)附近可展成泰勒級(jí)數(shù)辦法,則θ(t)=kq*i(t)-kp(1)其中kq是流量增益系數(shù),kp是壓力影響系數(shù)。(1)式是根據(jù)試驗(yàn)數(shù)據(jù)修正而來(lái)。2、液壓缸工作腔液體流動(dòng)連續(xù)方程式θ(t)=Ao(t)+kt+(2)A—工作面積,kt—漏損系數(shù),V—液體體積壓縮率,—彈性模量。在不考慮液體的的可壓縮性,又不考慮泄漏,(2)式可簡(jiǎn)化為θ(t)=Ao(t)(3)3、液壓缸負(fù)載平衡方程式A=mo(t)+co(t)+k*o(t)+F(t)(4)若自由狀態(tài),即F(t)=0,則A=mo(t)+co(t)+k*o(t)(5)4、系統(tǒng)的運(yùn)動(dòng)方程式消去中間變量和θ(t),得mo(t)+co(t)+(k+A2/ρ(t)=Akq*i(t)/kp(6)若外部系統(tǒng)阻尼、剛度系數(shù)不受影響,即c=0,k=0,慣性力不考慮。則kq*i(t)=A*o(t)(7)這是來(lái)多少油出多少油的關(guān)系式。第三節(jié)電氣系統(tǒng)的數(shù)學(xué)模型1.阻容感網(wǎng)絡(luò)系統(tǒng)圖20由基爾霍夫第一定律(封閉系統(tǒng))Ui(t)-UR(t)-Uc(t)-UL(t)=0Ui(t)-Ri(t)--L=0=L+R+二階微分方程2.放大器網(wǎng)絡(luò)系統(tǒng)圖211)比例運(yùn)算放大器由ij(t)=0i1(t)=i2(t)+i3(t)因?yàn)榉糯笃髯韬艽?,i3(t)0,于是有i1(t)i2(t)即=i1(t)=i2(t)=(引入:Uo(t)=-βUA=-(104-106)UA由于β很大,UA0)UO(t)=(1+)UA(t)-Ui(t)2)積分運(yùn)算放大器圖22同前分析過(guò)程。i1(t)=;U0(t)==由i1(t)i2(t)而來(lái)輸出與輸入之間存在積分關(guān)系。3)微分運(yùn)算放大器圖23由Ui(t)=得i1(t)=ci2(t)=,由i1(t)i2(t)關(guān)系式,得U0(t)=R2C輸出與輸入之間存在微分關(guān)系。第四節(jié)線性控制系統(tǒng)的卷積關(guān)系式為建立輸出與輸入之間的關(guān)系,常利用卷積關(guān)系式。一.線性控制系統(tǒng)的權(quán)函數(shù)圖24設(shè)圖示系統(tǒng),任意給輸入量*i(t),輸出量為*o(t)。當(dāng)*i(t)=δ(t),即為單位脈沖函數(shù),此時(shí)的輸出(也稱為響應(yīng))*o(t)記為h(t)。h(t)稱為系統(tǒng)的單位脈沖響應(yīng)或稱為權(quán)函數(shù)。若輸入脈沖發(fā)生在τ時(shí)刻,則δ(t)和h(t)曲線都會(huì)向右移動(dòng)τ,形狀不變。圖25-1即*i(t)=δ(t1),對(duì)應(yīng)的*o(t)=h(t1),其中t1=t-τ定義:δ(t-τ)=τ≤t≤τ+δtδ(t-τ)=0其它這里δ(t)≠δt,δt=⊿t二、任意輸入響應(yīng)的卷積關(guān)系式當(dāng)*i(t)為任意函數(shù)時(shí),可劃分為n個(gè)具有強(qiáng)度Aj的脈沖函數(shù)的疊加,即圖25-2圖25-3*i(t)=其中Aj=*i(jδt).Δt=面積=強(qiáng)度在*一個(gè)脈沖函數(shù)Ajδ(t-jδt)作用下,響應(yīng)為Ajh(t-jδt)。系統(tǒng)有n個(gè)脈沖函數(shù),則響應(yīng)為:*o(t)==當(dāng)n時(shí),,nδt,j.δt=τ,δt=dτ*o(t)=卷積關(guān)系式上式說(shuō)明“任意輸入*i(t)所引起的輸出*o(t)等于系統(tǒng)的權(quán)函數(shù)h(t)和輸入*i(t)的卷積”。三、卷積的概念與性質(zhì)定義:若已知函數(shù)f(t)和g(t),其積分存在,則稱此積分為f(t)和g(t)的卷積,記作。性質(zhì):1、交換律=證明:令t-τ=t1dτ=-dt1(τ=t-t1)===(左=右,變量可代換)證畢。2、分配律3、若t∠0時(shí),f(t)=g(t)=0,則=f(t)—輸入;g(t)—系統(tǒng);*0(t)—輸出*0(t)=四.卷積積分的圖解計(jì)算積分上下限的確定:下限取f(τ)和g(t-τ)值中最大一個(gè);上限取f(τ)和g(t-τ)值中最小一個(gè)。圖26第三章拉普拉斯變換第一節(jié)傅氏變換(傅立葉變換)傅氏級(jí)數(shù)的復(fù)指數(shù)形式(對(duì)周期函數(shù)而言,略講)非周期函數(shù)的傅氏積分非周期函數(shù)f(t)可以看作是T周期函數(shù)fT(t),即f(t)=,若f(t)在上滿足:1、在任一有限區(qū)間上滿足狄氏條件(10連續(xù)或只有有限個(gè)第一類間斷點(diǎn);20只有有限個(gè)極值點(diǎn));2、在上絕對(duì)可積(收斂)。f(t)=非周期函數(shù)的積分式三、傅氏變換1、傅氏變換概念在傅氏積分式中,令t是積分變量,積分后是的函數(shù)。稱F(ω)=F[f(t)]——傅氏變換f(t)=F-1[F(ω)]——傅氏逆變換2、傅氏變換的缺點(diǎn)說(shuō)明10條件較強(qiáng),要求f(t)絕對(duì)收斂。做不到。例如,1(t)、Asinωt,它們的積分均發(fā)散,即F[f(t)]不存在,無(wú)法進(jìn)行傅氏變換。20要求f(t)在有意義,而在實(shí)際中,t<0常不定義。解決的辦法:10將f(t)乘以收斂因子e-σt使積分收斂(σ>0);20將f(t)乘以1(t),使當(dāng)t<0時(shí),函數(shù)值為零??蓪⒎e分區(qū)間由換成。于是傅氏變換變形為拉氏變換L[f(t)]:L[f(t)]=其中S=—復(fù)變量。成立的條件是Re(s)=σ>0經(jīng)過(guò)處理,能解決大部分工程上的問(wèn)題。這就是Laplace變換(F.L.Z.H.W.*).拉普拉斯變換(Laplace)定義:1.若t0時(shí),*(t)單值;t<0時(shí),*(t)=02.收斂,Re(s)=σ>0則稱*(s)=為*(t)的拉氏變換式,記作*(s)=L[*(t)]*(t)=L-1[*(s)]拉氏逆變換舉例1.脈沖函數(shù)δ(t)的拉氏變換L[δ(t)]=12.單位階躍函數(shù)*(t)=1(t)=1的拉氏變換*(s)=L[1(t)]=,Re(s)>0即σ>03.*(t)=,—常數(shù)=L[]=Re(s)>0即σ>4、*(t)=sint,—常數(shù)=L[sint]==Re(s)>05.*(t)=tn冪函數(shù)的拉氏變換利用伽瑪函數(shù)方法求積分。=L(tn)=函數(shù)標(biāo)準(zhǔn)形式令st=u,t=tn=s-nundt=du,則=若n為自然數(shù),*(s)=L(tn)=Re(s)>0比如:*(t)=t,=*(t)=t2,=*(t)=t3,=第三節(jié)拉氏變換的基本定理與傅氏變換的定理差不多,但有的定理不相同,同時(shí)比傅氏變換定理多也許一些。1、線性定理(比例和疊加定理)若L[*1(t)]=*1(s),L[*2(t)]=*2(s)L[k1*1(t)+k2*2(t)]=k1*1(s)+k2*2(s)例題*(t)=at2+bt+c=L[at2+bt+c]=aL(t2)+bL(t)+cL(1)=Re(s)>02、微分定理若L[*(t)]=*(s),則L[(t)]=s2*(s)-*(0)*(0)是*(t)的初始值,利用分部積分法可以證明。推論:L[、、L[*(n)(t)]=sn*(s)-sn-1*(0)-、、、*(0)(n-1)注意大小寫(xiě),小寫(xiě)為時(shí)間函數(shù)。若初始條件全為零,則L[*(n)(t)]=sn*(s)3、積分定理若L[*(t)]=,則L[]=推論:L[]=4、衰減定理(復(fù)數(shù)域位移性質(zhì))若L[*(t)]=,則L[]=表明原函數(shù)乘以指數(shù)函數(shù)的拉氏變換,等于象函數(shù)做位移。例題*(t)=因L[]=,則=L[]=5、延時(shí)定理(時(shí)間域位移性質(zhì))若L[*(t)]=,t<0時(shí),*(t)=0,則L[*(t)]=、在時(shí)間域延遲(位移),行動(dòng)于它的象函數(shù)乘以指數(shù)因子。圖276、初值定理若L[*(t)]=*(s),且存在,則它建立了*(t)在坐標(biāo)原點(diǎn)的值與象函數(shù)s在無(wú)限遠(yuǎn)點(diǎn)的值之間的對(duì)應(yīng)關(guān)系。表明,函數(shù)*(t)在0點(diǎn)的函數(shù)值可以通過(guò)象函數(shù)乘以s,然后取極限值而獲得。7、終值定理若L[*(t)]=,且存在,則8、卷積定理若L[*(t)]=,L[y(t)]=,則L[]=.第四節(jié)拉氏逆變換已知象函數(shù)*(s)求原函數(shù)*(t)的運(yùn)算稱為拉氏逆變換,記作*(t)=L-1[]推導(dǎo)過(guò)程略。這是復(fù)變函數(shù)的積分公式,按定義計(jì)算比較困難。其一是查表法(略);其二是變形法;第三是配換法;第四是分項(xiàng)分式法。這里簡(jiǎn)單介紹第二項(xiàng),著重講第四項(xiàng)。一、變形法(要利用好各個(gè)性質(zhì))已知=,求*(t)解:s變量中有位移量a,原函數(shù)中必有衰減因子e-at,原本是1(t),現(xiàn)在是e-at.1(t)=e-at*(s)=,求*(t)解:s變量中有位移a,*(t)中必有衰減因子e-at;*(s)中有衰減;*(t)中的時(shí)間t必有位移。對(duì)于的逆變換是第一步變形原函數(shù)乘以衰減因子e-at,得*(t)1=e-at第二步變形t位移,即(t-),得*(t)2=*(t)=二、分項(xiàng)分式法若*(s)為有理分式,即=(n>m)分母多項(xiàng)式Qn(s)具有個(gè)重根s0和個(gè)單根s1s2…,顯然n=+,則分母多項(xiàng)式Qn(s)=Si是實(shí)數(shù)也可能是虛數(shù),是Qn(s)的零點(diǎn),又是*(s)的極點(diǎn)。可化成:在分項(xiàng)分式中,k0i、kj均為常數(shù),稱為的各極點(diǎn)處的留數(shù)。對(duì)于各個(gè)單項(xiàng),則K如何求得???**留數(shù)的求解1、比較系數(shù)法例:=s=0,-3,-4為三個(gè)單極點(diǎn)。=通分聯(lián)立方程:1=a+b+c4=7a+4b+3c2=12a解得a=2、極限法(留數(shù)規(guī)則)10單極點(diǎn)處的留數(shù)(相對(duì)比較系數(shù)法簡(jiǎn)單一些)若S是*(s)的分母多項(xiàng)式Qn(s)的一個(gè)單根,稱s=S為的一個(gè)單極點(diǎn)。此時(shí)可設(shè):=+是余項(xiàng),其中不再含有S-S的因子??蓪?xiě)成:(S-S)=K+(S-S)令sS,對(duì)等式兩邊取極限,可得K=例題:==k1=k2=k3=畢20、重極點(diǎn)處的留數(shù)若s0是的分母多項(xiàng)式Qn(s)的一個(gè)重根,則稱s=s0是一個(gè)重極點(diǎn)。在重極點(diǎn)處有個(gè)留數(shù)k01、k02、、、,此時(shí)可設(shè)=,W(s)中不含(s-s0)。=令s,兩邊取極限,得為求,可對(duì)求階導(dǎo)數(shù),再令s,兩邊取極限,得例題:已知=,求其留數(shù)。解(s)是三重極點(diǎn),(是兩重極點(diǎn),(是單極點(diǎn)。==-1=-2=-3=-2=2=1常系數(shù)線性微分方程的拉氏變換解微分方程L變換象函數(shù)的代數(shù)方程原函數(shù)的微分方程L-1逆變換象函數(shù)例題:求的解,并滿足初始條件;解:L變換=代入初始條件,求解代數(shù)方程。L-1逆變換畢第四章傳遞函數(shù)第一節(jié)傳遞函數(shù)的概念與性質(zhì)一、傳遞函數(shù)的概念對(duì)于單輸入、單輸出的線性定常系統(tǒng),傳遞函數(shù)定義為“當(dāng)輸入量和輸出量的一切初始值均為零時(shí),輸出量的拉氏變換和輸入量的拉氏變換之比”。原函數(shù)描述的系統(tǒng):輸入*i(t)系統(tǒng)h(t)輸出*0(t)以象函數(shù)描述的系統(tǒng):輸入*i(s)系統(tǒng)G(s)輸出*0(s)傳遞函數(shù)為:傳遞函數(shù)是描述系統(tǒng)動(dòng)態(tài)性能的數(shù)學(xué)模型的一種形式,是系統(tǒng)的復(fù)數(shù)域數(shù)學(xué)模型二、傳遞函數(shù)的一般形式線性定常系統(tǒng)的運(yùn)動(dòng)微分方程式的一般形式為:其中a0、a1。。。an,b0、b1。。。bm均為實(shí)常數(shù)。對(duì)上式做拉氏變換即可求得該系統(tǒng)的傳遞函數(shù)。傳遞函數(shù)具有以下三種常用形式:Ⅰ型Ⅱ型Ⅲ型其中,Ⅱ型中,sb1、sb2、sbm是G(s)的零根,sa1、sa2、san是G(s)的極點(diǎn),也是分母多項(xiàng)式的根。這些根可以是單根、重根、實(shí)根或復(fù)根。若有復(fù)根,則必共軛復(fù)根同時(shí)出現(xiàn)。Ⅲ型中,kl稱為環(huán)節(jié)增益;是環(huán)節(jié)的時(shí)間常數(shù);是環(huán)節(jié)的阻尼比。以上均為實(shí)常數(shù),且,。在分子、分母多項(xiàng)式中,每個(gè)因式代表一個(gè)環(huán)節(jié)。其中每個(gè)因式確定一個(gè)零根;每個(gè)因式()確定一個(gè)非零實(shí)根;每個(gè)因式確定一對(duì)共軛復(fù)根。三、傳遞函數(shù)的性質(zhì)1、傳遞函數(shù)只決定于系統(tǒng)的在性能,而與輸入量大小以及它隨時(shí)間的變化規(guī)律無(wú)關(guān)。2、傳遞函數(shù)不說(shuō)明系統(tǒng)的物理結(jié)構(gòu),只要?jiǎng)討B(tài)性能相似,不同的系統(tǒng)可具有同形式的傳遞函數(shù)。3、分母的最高階次為n的系統(tǒng)稱為n階系統(tǒng)。實(shí)用上n≥m。4、s的量綱為時(shí)間的倒數(shù),G(S)的量綱是輸出與輸入之比。5、所有系數(shù)均為實(shí)數(shù),原因是:“它們都是系統(tǒng)元件參數(shù)的函數(shù),而元件參數(shù)只能是實(shí)數(shù)”。第二節(jié)線性控制系統(tǒng)的典型環(huán)節(jié)控制系統(tǒng)都是由若干個(gè)環(huán)節(jié)組合而成,無(wú)論系統(tǒng)多么復(fù)雜,但所組成的環(huán)節(jié)僅有幾種,舉例說(shuō)明。一、比例環(huán)節(jié)傳遞函數(shù)G(s)=K例:(機(jī)械系統(tǒng),不考慮彈性變形)圖a(液壓系統(tǒng),不考慮彈性變形,可壓縮性和泄漏)圖b圖c圖4-1比例環(huán)節(jié)G(s)=g(t)=A.V(t)G(s)=u(t)=R.i(t)G(s)=二、積分環(huán)節(jié)傳遞函數(shù)的標(biāo)準(zhǔn)形式:G(s)一階系統(tǒng)G(s)=二階系統(tǒng)例:電感電路系統(tǒng)i0(t)=i0(t)—輸出;ui(t)—輸入L—變換I0(s)=G(s)=這里三、慣性環(huán)節(jié)一階慣性環(huán)節(jié)的傳遞函數(shù)標(biāo)準(zhǔn)形式:例:阻容電路K=1,T=RC四、振蕩環(huán)節(jié)傳遞函數(shù)標(biāo)準(zhǔn)形式:其中K—比例系數(shù),—阻尼比,T—周期,—無(wú)阻尼自由振動(dòng)固有角頻率。例1:質(zhì)量—彈性—阻尼系統(tǒng)輸入f(t),輸出*(t)運(yùn)動(dòng)方程:L—變換:=其中,例2:阻容感電路(R—C—L電路)***引人復(fù)阻抗概念L—變換L—變換L—變換復(fù)阻抗,又稱為復(fù)數(shù)域的歐姆定律。見(jiàn)題圖得其中,需要注意的是,只有當(dāng)?shù)奶卣鞣匠叹哂幸粚?duì)共軛復(fù)根時(shí),系統(tǒng)才能稱為振蕩環(huán)節(jié)。否則,稱為二階慣性環(huán)節(jié)。即五、放大器模擬電路舉例(第二章已說(shuō)過(guò))通式:1、若比例環(huán)節(jié)2、若積分環(huán)節(jié)3、若微分環(huán)節(jié)4、若一階慣性環(huán)節(jié)5、若二階導(dǎo)前環(huán)節(jié)第三節(jié)系統(tǒng)框圖及其運(yùn)算系統(tǒng)有很多環(huán)節(jié)組成,相互之間如何運(yùn)算?框圖又如何運(yùn)算?一、系統(tǒng)框圖的聯(lián)接及其傳遞函數(shù)1、串聯(lián)2、并聯(lián)=對(duì)于n個(gè)系統(tǒng)3、反饋聯(lián)接*i(s)—輸入信號(hào)*0(s)—輸出信號(hào)=E(s).G1(s)E(s)—偏差信號(hào)=*i(s)B(s)B(s)—反饋信號(hào)=H(s).*0(s)10、前向傳遞函數(shù)20、開(kāi)環(huán)傳遞函數(shù)30、閉環(huán)傳遞函數(shù)整理得:二、框圖的變換變換的目的:將復(fù)雜聯(lián)接的框圖,進(jìn)行等效變形,使之成為僅包含有串、并、反饋等簡(jiǎn)單聯(lián)接方式,以便求算系統(tǒng)的總傳遞函數(shù)。1、匯交點(diǎn)的分離、合并與易位2、匯交點(diǎn)與分支點(diǎn)易位3、匯交點(diǎn)與方框易位4、分支點(diǎn)與方框易位第四節(jié)多變量系統(tǒng)的傳遞函數(shù)一、有干擾作用時(shí)系統(tǒng)的輸出由于是線性系統(tǒng),可單獨(dú)考慮輸入與干擾的作用。1、僅有輸入作用,即=0時(shí)。前向通道傳遞函數(shù)=系統(tǒng)傳遞函數(shù)2.僅有干擾作用,即=0時(shí)。前向通道傳遞函數(shù)=系統(tǒng)傳遞3、輸入和干擾同時(shí)存在的總輸出二、雙自由度彈簧、阻尼、質(zhì)量系統(tǒng)輸入和輸出和。按質(zhì)量可分兩個(gè)隔離體?;蛘邔?xiě)成L—變換或簡(jiǎn)寫(xiě)成[H]=兩邊同左乘[H]-1[G]是傳遞矩陣,是伴隨矩陣。第五章時(shí)間響應(yīng)分析(時(shí)域分析法)第一節(jié)概述一、時(shí)間響應(yīng)概念這是設(shè)備性能測(cè)試的一種方法,即在典型信號(hào)作用下,對(duì)系統(tǒng)的輸出隨時(shí)間變化情況進(jìn)行分析和研究。二、時(shí)間響應(yīng)的組成(瞬態(tài)、穩(wěn)態(tài))1°、瞬態(tài)響應(yīng):從是系統(tǒng)進(jìn)入理想狀態(tài)的時(shí)間。此過(guò)程稱為過(guò)渡過(guò)程。由于系統(tǒng)總會(huì)有儲(chǔ)能元件,輸出量不可能立即跟蹤上輸入量,在系統(tǒng)穩(wěn)定之前,總是表現(xiàn)出各種各樣的瞬態(tài)過(guò)程。2°、穩(wěn)態(tài)響應(yīng):tst階段的響應(yīng)。三、時(shí)間響應(yīng)分析的目的1°、了解系統(tǒng)的動(dòng)態(tài)性能和質(zhì)量指標(biāo);2°、作為設(shè)計(jì),校正及使用系統(tǒng)的依據(jù)。四、方法利用傳遞函數(shù)來(lái)求算微分方程的解第二節(jié)單位脈沖輸入的時(shí)間響應(yīng)輸入信號(hào):*i=δ,則=1;輸出信號(hào):*0,則=H=H=G一、一階慣性環(huán)節(jié)的單位脈沖響應(yīng)一階慣性環(huán)節(jié)傳遞函數(shù)標(biāo)準(zhǔn)形式:G==輸出:=G=G==(提示:L=,注意符號(hào))時(shí)間響應(yīng)(時(shí)域)=L=e是一個(gè)指數(shù)函數(shù)可根據(jù)單位脈沖響應(yīng),獲知被測(cè)系統(tǒng)的傳遞函數(shù)(錘擊)。由圖可知,用兩點(diǎn)坐標(biāo)值可定出K和T。振蕩環(huán)節(jié)的單位脈沖響應(yīng)系統(tǒng)傳遞函數(shù)標(biāo)準(zhǔn)形式=按阻尼比的大小分析四種情況。1、無(wú)阻尼狀態(tài),即=0===時(shí)間響應(yīng):或者2、欠阻尼狀態(tài),即0<<1(復(fù)習(xí):衰減定理:;另外:)==時(shí)間響應(yīng)為衰減的正弦函數(shù)?!獰o(wú)阻尼自由振動(dòng)的角頻率;—為有阻尼自由振動(dòng)的角頻率。3、臨界阻尼狀態(tài),即=1=時(shí)間響應(yīng):=是兩個(gè)相同的一階慣性環(huán)節(jié)的串聯(lián)。當(dāng)t>0,>0,沒(méi)有振動(dòng)現(xiàn)象,稱為蠕動(dòng)。4、過(guò)阻尼狀態(tài),>1===時(shí)間響應(yīng):是兩個(gè)不同的一階慣性環(huán)節(jié)的串聯(lián),圖形同上相似,蠕動(dòng)。第三節(jié)單位階躍輸入的時(shí)間響應(yīng)輸入信號(hào):=1(t),則=輸出信號(hào):=,一、一階慣性環(huán)節(jié)的傳遞函數(shù):=(由分解因式(而來(lái))時(shí)間響應(yīng):=歸一化處理(因輸入是單位階躍函數(shù)),其中通常認(rèn)為:0≤t≤4T為瞬態(tài)響應(yīng),t>4T為穩(wěn)態(tài)響應(yīng)。二、振蕩環(huán)節(jié)的單位階躍響應(yīng)振蕩環(huán)節(jié)的傳遞函數(shù):==有無(wú)阻尼、欠阻尼、臨界阻尼和過(guò)阻尼四種狀態(tài),著重分析欠阻尼。***欠阻尼狀態(tài):0<<1由上式的分母多項(xiàng)式,即時(shí)間響應(yīng):()===歸一化處理:=由于高階系統(tǒng)常用一個(gè)二階系統(tǒng)來(lái)近似,故有必要對(duì)二階系統(tǒng)的動(dòng)態(tài)性能指標(biāo)進(jìn)行推算和定義。1、峰值時(shí)間來(lái)理:令,得又由:即當(dāng)n=1時(shí)是第一個(gè)峰,故2、峰值3、穩(wěn)態(tài)響應(yīng)值4、最大超調(diào)量%=%5、調(diào)整時(shí)間人們定義,波動(dòng)量誤差在0.02—0.05之間,系統(tǒng)進(jìn)入穩(wěn)態(tài)區(qū)域,在此之前的時(shí)段稱為過(guò)渡過(guò)程,其時(shí)間稱為調(diào)整時(shí)間或過(guò)渡過(guò)程時(shí)間。公式為:若系數(shù),則上式更能滿足要求。則若=0.02,若=0.05,***討論、與各性能指標(biāo)間的關(guān)系10若不變,↑不變,↓,↓。此時(shí)有利于提高系統(tǒng)的靈敏度。即系統(tǒng)的快速性能好。20若不變,↑↓,(<0.707時(shí))↓↓,(>0.707時(shí))↑若0.4<<0.8,=0.24—2.5%<0.4時(shí),↑↑相對(duì)穩(wěn)定性能差。>0.8時(shí),↑↑、反應(yīng)遲鈍。30當(dāng)=0.707時(shí),均小,=0.4%。稱=0.707為最佳阻尼比。例題、圖為機(jī)械系統(tǒng)及其時(shí)間響應(yīng)曲線(是由試驗(yàn)記錄所得),輸入=8.9N,求彈簧剛度系數(shù)k、質(zhì)量m和阻尼系數(shù)c。解:輸入是力,即=8.9N。L—變換后,由左圖,寫(xiě)出運(yùn)動(dòng)方程式。L—變換式中由穩(wěn)態(tài)響應(yīng)K=0、03=解得由超調(diào)量%=%=%==%則由由由第四節(jié)高階系統(tǒng)的時(shí)間響應(yīng)若n階系統(tǒng)傳遞函數(shù)的一般形式為:其中給系統(tǒng)以單位階躍輸入,則考慮無(wú)重根的情況,此時(shí)可化為分項(xiàng)分式=K時(shí)間響應(yīng):K分析:1、或是一些簡(jiǎn)單的函數(shù)組成,即由一些一階和二階環(huán)節(jié)的時(shí)間響應(yīng)組成。其中一階環(huán)節(jié)數(shù)為,為的實(shí)根數(shù);二階環(huán)節(jié)數(shù)為,為的共軛復(fù)根的對(duì)數(shù)。2、若系統(tǒng)能正常工作,當(dāng),應(yīng)為零或?yàn)橛薪缰?,為此必須?0、m<n,否則分項(xiàng)分式中存在整數(shù)項(xiàng)或sn項(xiàng),其原函數(shù)不存在。舉例說(shuō)明:,其中m=3。n=2,m>n則(補(bǔ)充說(shuō)明數(shù)學(xué)定義:)在數(shù)學(xué)上有意義,實(shí)際中不存在,的導(dǎo)數(shù)及高階導(dǎo)數(shù)不存在。物理意義:系統(tǒng)必然有質(zhì)量、慣性,且能量又是有限的,不可能出現(xiàn)m>n超能量系統(tǒng)。20即在中,s要具有負(fù)實(shí)根。在中,一對(duì)共軛復(fù)根。即,要具有負(fù)實(shí)部的根。否則,當(dāng)時(shí),不存在。舉例:本例中具有負(fù)實(shí)根。,具有負(fù)實(shí)部。當(dāng)能恢復(fù)到零位。舉例:當(dāng)不存在。30、在中實(shí)部絕對(duì)值較大根所在的項(xiàng),對(duì)系統(tǒng)影響很小,可忽略不計(jì)。工程上常用此法使系統(tǒng)降低階數(shù)。舉例:則當(dāng)忽略絕對(duì)值較大根所在的項(xiàng),得
第六章頻率響應(yīng)分析(頻率特性分析)微分方程→是時(shí)間域中的數(shù)學(xué)模型傳遞函數(shù)→是復(fù)數(shù)域中的數(shù)學(xué)模型頻率特性→是頻率域中的數(shù)學(xué)模型第一節(jié)諧和輸入時(shí)系統(tǒng)的定態(tài)響應(yīng)一、諧和定態(tài)響應(yīng)公式系統(tǒng)以諧和函數(shù)輸入:設(shè)系統(tǒng)的傳遞函數(shù)為G,以S=代替,即G諧和傳遞函數(shù)輸出:(幅值和相角在變化)其中:,是的模.同理:1°若;則2°若;則3°若則二、諧和定態(tài)響應(yīng)的性質(zhì)輸入:;輸出:;比較得:;由此得出以下結(jié)論:1.當(dāng)系統(tǒng)以諧和時(shí)間函數(shù)信號(hào)輸入時(shí),系統(tǒng)的定態(tài)響應(yīng)仍為諧合時(shí)間函數(shù);2.響應(yīng)函數(shù)與輸入函數(shù)具有相同的角頻率;3.響應(yīng)函數(shù)與輸入函數(shù)的幅值之比等于復(fù)變量的模→稱為幅頻特性;4.響應(yīng)函數(shù)與輸入函數(shù)的相位之差等于復(fù)變量的相位角→稱為相頻特性;5.復(fù)變量的函數(shù)形式與傳遞函數(shù)相同,僅以替代s;6.與是且僅是輸入信號(hào)頻率的函數(shù),而與其它因素?zé)o關(guān)。三、頻率特性諧和輸入傳遞函數(shù)諧和穩(wěn)態(tài)輸出—頻率特性;﹤—相頻特性=;—實(shí)頻特性;—虛頻特性。=;若=則為什么要對(duì)系統(tǒng)輸入諧和函數(shù)?系統(tǒng)是由具體的結(jié)構(gòu)元件組成,而結(jié)構(gòu)元件有其自身的各階固有頻率,在力的作用下(任意力都可以展成富氏級(jí)數(shù),是各諧和函數(shù)作用之和),若*個(gè)元件有故障,就有可能引起系統(tǒng)工作的不正常。故要在頻率域?qū)ο到y(tǒng)進(jìn)行研究。第二節(jié)頻率特性極坐標(biāo)圖頻率特性的極坐標(biāo)圖,又稱乃斯特圖(Nyquist),是研究在復(fù)平面上,當(dāng)從0變到時(shí),矢量的端點(diǎn)所描述的軌跡圖。由此圖可以直觀地了解系統(tǒng)的動(dòng)態(tài)特性。一、典型環(huán)節(jié)的極坐標(biāo)圖1、比例環(huán)節(jié)傳遞函數(shù)(頻率特性)諧和傳遞函數(shù)=K其中=0,=K對(duì)于輸入,輸出2、積分環(huán)節(jié)傳遞函數(shù)(令)頻率特性:=幅頻特性:=相頻特性:(滯后900)定態(tài)響應(yīng):3、微分環(huán)節(jié)傳遞函數(shù)(令KT=1)頻率特性:=;=;=0;=;(超前900)定態(tài)響應(yīng);4、二階積分環(huán)節(jié)傳遞函數(shù)=-,=-,=0=,(滯后1800)定態(tài)響應(yīng);5、二階微分環(huán)節(jié)傳遞函數(shù)=-2,=-2=0,=2,(超前1800)定態(tài)響應(yīng);6、導(dǎo)前環(huán)節(jié)傳遞函數(shù)=1+jT,=1,=T,=,7、一階慣性環(huán)節(jié)傳遞函數(shù)=,=,=-,,=是圓的極坐標(biāo)方程,由于∠0,只是半個(gè)圓圖形。8、慣性積分環(huán)節(jié)=,∠0,曲線在第3象限。尋找漸近線。即當(dāng)→0,=-T(直線),→9、振蕩環(huán)節(jié)=(令K=1)分析:隨變化,由正→0→負(fù),且<0,曲線在第四、第三象限。起點(diǎn):過(guò)虛軸點(diǎn):終點(diǎn):=10、延時(shí)環(huán)節(jié)==1,(單位圓)11.振蕩環(huán)節(jié)二、極坐標(biāo)曲線的一般形式1、頻率特性的一般形式線性系統(tǒng)頻率特性(諧和傳遞函數(shù))一般形式為:=幅率特性:=相頻特性:其中指分子、分母的階數(shù)。當(dāng)、、時(shí),稱系統(tǒng)為Ⅰ、Ⅱ、Ⅲ型系統(tǒng)。2、極坐標(biāo)曲線的起始狀況當(dāng)0時(shí),有,同時(shí)10、O型系統(tǒng)(=0)起始于正實(shí)軸的(K,j0)點(diǎn)上。20、非O型系統(tǒng)(≠0)起始于無(wú)窮遠(yuǎn)處,且由實(shí)軸順時(shí)針?lè)较蜣D(zhuǎn)過(guò)個(gè)象限。3、極坐標(biāo)曲線的終止?fàn)顩r當(dāng)→時(shí),有,10、當(dāng)n>m時(shí),,沿著*坐標(biāo)軸趨向于原點(diǎn),該坐標(biāo)軸與正實(shí)軸的夾角為。20、當(dāng)n=m時(shí),,,即終止于實(shí)軸上的有限點(diǎn)(A,0)。4、K對(duì)極坐標(biāo)圖形的影響設(shè)有兩個(gè)系統(tǒng),則,=10、增益K的變化僅僅使極坐標(biāo)曲線按比例放大或縮小;20、K值不同的兩個(gè)系統(tǒng),極坐標(biāo)曲線同頻率點(diǎn)的聯(lián)線必過(guò)原點(diǎn),這是因?yàn)樵擖c(diǎn)與原點(diǎn)間的夾角相同。第三節(jié)頻率特性的對(duì)數(shù)坐標(biāo)圖問(wèn)題的提出:有了極坐標(biāo)圖,何必需要對(duì)數(shù)坐標(biāo)圖(Bode波德圖)?乃氏圖存在的缺點(diǎn):10、繪制麻煩,需要很多點(diǎn)才能描繪曲線;20、不能明顯地表示系統(tǒng)基本的組成情況;30、由極坐標(biāo)圖很難寫(xiě)出系統(tǒng)的傳遞函數(shù)。優(yōu)點(diǎn)是可直觀地了解系統(tǒng)的動(dòng)態(tài)特性。一、對(duì)數(shù)坐標(biāo)圖概念設(shè)=,取自然對(duì)數(shù),得由兩部分組成,各自都是的函數(shù),可分別考慮。即由乃氏圖的一圖改為兩圖??紤]到人們常用的習(xí)慣,改用log。定義:L()=Log=Lg—幅頻圖。單位是“貝”,是兩個(gè)信號(hào)的功率之比(這里考慮到功率與速度、電流、壓強(qiáng)的平方成正比),即2=對(duì)數(shù)坐標(biāo)圖改為單位還是貝。考慮的貝的單位過(guò)大,計(jì)算不方便,用“分貝”(dB)來(lái)表示。1貝=10分貝,故單位是分貝(這里的分貝是借用的概念,與專門(mén)作為計(jì)量單位的電平、聲量的分貝不同)既然是的函數(shù),可直接用直角坐標(biāo)系來(lái)描述。***對(duì)數(shù)坐標(biāo)圖的優(yōu)點(diǎn)。10、便于在較寬的頻率圍研究系統(tǒng)的頻率特性。即,低頻帶得以拓寬,高頻帶得以壓縮。純線性坐標(biāo)辦不到;20、可將幅值的乘積轉(zhuǎn)化為相加,對(duì)于繪制由多個(gè)環(huán)節(jié)串聯(lián)而成的系統(tǒng),在圖紙上可直接疊加;30、可采用漸近線近似的作圖方法,簡(jiǎn)化作圖。接第六章二、典型環(huán)節(jié)的對(duì)數(shù)坐標(biāo)圖1.比例環(huán)節(jié)(1)K>0時(shí),(2)K<0時(shí),2.一階積分環(huán)節(jié)()(1)K>0時(shí),;當(dāng)=1時(shí),當(dāng)=10時(shí),,全頻帶滯后9003.二階積分環(huán)節(jié)(),全頻帶滯后18004.一階微分環(huán)節(jié)(),,5.二階微分環(huán)節(jié)(),6.一階貫性環(huán)節(jié)(),,分析:(1)當(dāng)<<0時(shí),,(2)當(dāng)>>0時(shí),,(3)當(dāng)=時(shí),7.一階導(dǎo)前環(huán)節(jié)(),8.振蕩環(huán)節(jié)(),,分析:(1)當(dāng)<<0時(shí),,(2)當(dāng)>>0時(shí),,(3)當(dāng)=時(shí),(4)誤差分析略(5)諧振頻率與諧振峰值令,得(轉(zhuǎn)角頻率)當(dāng)時(shí),=;當(dāng)時(shí),=,無(wú)諧振現(xiàn)象。三、典型環(huán)節(jié)的對(duì)數(shù)坐標(biāo)圖的一般特點(diǎn)(總結(jié))1.比例環(huán)節(jié)的幅頻特性為的水平線。2.純積分、微分環(huán)節(jié)的幅頻特性為斜直線(=)二階純積分、微分環(huán)節(jié),直線,積分為-,微分為+3.一階慣性,導(dǎo)前環(huán)節(jié),有兩條漸近線:0db線+(二階慣性,振蕩系統(tǒng)(環(huán)節(jié)):0db線+(。轉(zhuǎn)角頻率W為:一階四.一般系統(tǒng)的對(duì)數(shù)坐標(biāo)圖一般系統(tǒng)的諧和傳遞函數(shù)可表示為一些包括上述十種基本環(huán)節(jié)的連成積。即=K,則L(w)=20lg可以逐一環(huán)節(jié)疊加。例:G(s)=,作頻率響應(yīng)的對(duì)數(shù)坐標(biāo)圖。解:G(jw)=,按各環(huán)節(jié)化成標(biāo)準(zhǔn)型。=(1+j,1-)共有6個(gè)環(huán)節(jié),即比例環(huán)節(jié)k=0.4;積分環(huán)節(jié);一階慣性環(huán)節(jié)(=1);一階導(dǎo)前環(huán)節(jié)(=2);一階慣性(=5)和振蕩環(huán)節(jié)=10,按轉(zhuǎn)角頻率順序,從小到大排列。排序:比例比例環(huán)節(jié):20lgk=20lg0.4=-8db相當(dāng)于把橫坐標(biāo)平移8db,不影響其他圖形。第四節(jié)由頻率特性的實(shí)驗(yàn)曲線求系統(tǒng)的傳遞函數(shù)用實(shí)驗(yàn)方法確定系統(tǒng)的頻率特性,又叫做系統(tǒng)識(shí)別。方法:由頻率特性坐標(biāo)圖,估算系統(tǒng)諧和傳遞函數(shù)。一、做幅頻特性的近似折線(漸近線)近似折線由若干個(gè)首尾銜接的直線段構(gòu)成,銜接點(diǎn)稱為折點(diǎn)。各線段必須是20db/dec的整數(shù)倍。折點(diǎn)分貝值與實(shí)驗(yàn)曲線在該頻率處分貝值的偏差,取決于折點(diǎn)處的斜率增量,即前后段斜率之差。二、確定型級(jí)λ以及估算增益K頻率特性一般形式:在低頻處:即當(dāng)ω→0時(shí),此時(shí),若視相當(dāng)于*看,是一條直線方程。低頻段曲線的斜率為:低頻率段斜率的就是積分環(huán)節(jié)的作用結(jié)果確定。估算K。由低頻段公式:10.若起始線段或者是延長(zhǎng)線在處與0db線相交時(shí),即時(shí),則20.在起始線段任取點(diǎn)(一點(diǎn)要在實(shí)驗(yàn)曲線上),便能得到相對(duì)應(yīng)的分貝值,則若已知第一個(gè)折點(diǎn),即可代入。三、確定最小相位系統(tǒng)傳遞函數(shù)最小相位系統(tǒng)定義是系統(tǒng)傳遞函數(shù)G(s)在右半復(fù)平面上既無(wú)極點(diǎn),又無(wú)零點(diǎn),最小相位系統(tǒng)的相角的變化圍最?。Q由來(lái))。最小相位系統(tǒng),在同一個(gè)中,有且僅有一個(gè)最小相位傳遞函數(shù)。若處折線的斜率增量為20db/dec(前后段斜率差),則有一個(gè)導(dǎo)前環(huán)節(jié):2.若處折線的斜率增量為-20db/dec,則有一階慣性環(huán)節(jié):3.若處折線的斜率增量為40db/dec,則有二階導(dǎo)前環(huán)節(jié):,其中,ξ是由偏差(折線處)Δ而來(lái)。4.若處的斜率增量為-40db/dec,則有二階慣性或振蕩環(huán)節(jié):,其中5.最小相位系統(tǒng)諧和傳遞函數(shù)及傳遞函數(shù)分別為:四、舉例第七章控制系統(tǒng)的穩(wěn)定性第一節(jié)穩(wěn)定性的概述一、系統(tǒng)穩(wěn)定性概念定義:當(dāng)使它偏離初始的平衡狀態(tài)或穩(wěn)定響應(yīng)的擾動(dòng)(干擾)去除以后,系統(tǒng)能以足夠的精度恢復(fù)到初始的平衡狀態(tài)或穩(wěn)定響應(yīng)狀態(tài)中。二、系統(tǒng)穩(wěn)定的充要條件對(duì)于一般系統(tǒng),其運(yùn)動(dòng)微分方程總可以寫(xiě)成如下形式(以此說(shuō)明判據(jù)來(lái)源)當(dāng)擾動(dòng)去除后,即時(shí),上式變?yōu)辇R次微分方程,即:設(shè)解為,特征方程為(可求出n個(gè)根)齊次方程的通解形式為系統(tǒng)穩(wěn)定的充要條件是:,即說(shuō)明都應(yīng)具有負(fù)實(shí)部。在控制工程學(xué)科中,要用系統(tǒng)傳遞函數(shù)稱為系統(tǒng)的特征方程式。系統(tǒng)穩(wěn)定的必要條件是:“系統(tǒng)特征方程式的全部根在左半S平面”,即無(wú)右極點(diǎn)。三、系統(tǒng)穩(wěn)定性的判別方法亞普諾夫的直接法亞普諾夫的第一近似法胡維茨法(Hurwitz)勞斯法(Routh)米哈依洛夫乃奎斯特法(Nyquist)波德法(Bode)艾文思法(根軌跡法)第二節(jié)Hurwitz(胡維茨判據(jù))的所有根的實(shí)部均為負(fù)值的充要條件是Δ為各階行列式:對(duì)于2階系統(tǒng):對(duì)于3階系統(tǒng):.第三節(jié)Routh(勞斯判據(jù))列勞斯表(注:1,2行直接寫(xiě),其余靠計(jì)算得到)其中:勞斯判據(jù)如下:特征方程式全部根的實(shí)部全為負(fù)值的充要條件,即是系統(tǒng)穩(wěn)定的充要條件:第一列的各行值均不為零,符號(hào)全部為正;若上述值符號(hào)不同,系統(tǒng)不穩(wěn)定。變號(hào)的次數(shù)即是特征方程具有正實(shí)部的個(gè)數(shù)。若第一列中有零值(臨界狀態(tài)),可設(shè)一個(gè)接近于零的正數(shù)ε(讓),然后再按a,b項(xiàng)判別。舉例第四節(jié)Nyquist(乃奎斯特判據(jù))一、概念方法是:由開(kāi)環(huán)傳遞函數(shù)來(lái)判斷閉環(huán)系統(tǒng)的穩(wěn)定性。開(kāi)環(huán)傳遞函數(shù):閉環(huán)傳遞函數(shù):若是n階系統(tǒng),則特征方程仍然是n階系統(tǒng)。建立一個(gè)中間變量,其中F(s)的分母多項(xiàng)式是開(kāi)環(huán)傳遞函數(shù)的分母,即為開(kāi)環(huán)傳遞函數(shù)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度酒店行業(yè)全面消殺與衛(wèi)生管理合同
- 《認(rèn)識(shí)小數(shù)》(說(shuō)課稿)-2023-2024學(xué)年三年級(jí)下冊(cè)數(shù)學(xué)人教版
- Unit 3 Lesson1說(shuō)課稿 2024-2025學(xué)年冀教版(2024)七年級(jí)英語(yǔ)上冊(cè)
- 2025年建筑材料研發(fā)與技術(shù)轉(zhuǎn)讓協(xié)議2篇
- Unit 5 Places Lesson 2 Our town(說(shuō)課稿)-2024-2025學(xué)年北師大版(三起)英語(yǔ)五年級(jí)上冊(cè)
- 2025年手機(jī)銷售與售后服務(wù)合同范本6篇
- 2 說(shuō)話要算數(shù)2023-2024學(xué)年四年級(jí)下冊(cè)道德與法治同步說(shuō)課稿(統(tǒng)編版)
- 二零二五年度林業(yè)資源測(cè)繪合同范本3篇
- 11 保護(hù)土壤(說(shuō)課稿)-2023-2024學(xué)年三年級(jí)上冊(cè)科學(xué) 青島版
- 2025年度食品添加劑研發(fā)與生產(chǎn)合同(2025版)3篇
- 2024年醫(yī)師定期考核臨床業(yè)務(wù)知識(shí)考試題庫(kù)及答案(共三套)
- 2014新PEP小學(xué)英語(yǔ)六年級(jí)上冊(cè)-Unit5-What-does-he-do復(fù)習(xí)課件
- 建筑材料供應(yīng)鏈管理服務(wù)合同
- 孩子改名字父母一方委托書(shū)
- 2024-2025學(xué)年人教版初中物理九年級(jí)全一冊(cè)《電與磁》單元測(cè)試卷(原卷版)
- 江蘇單招英語(yǔ)考綱詞匯
- 2024年事業(yè)單位財(cái)務(wù)工作計(jì)劃例文(6篇)
- 2024年工程咨詢服務(wù)承諾書(shū)
- 青桔單車保險(xiǎn)合同條例
- 車輛使用不過(guò)戶免責(zé)協(xié)議書(shū)范文范本
- 2023-2024學(xué)年天津市部分區(qū)九年級(jí)(上)期末物理試卷
評(píng)論
0/150
提交評(píng)論