版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1過兩點(diǎn)有且只有一條直線2兩點(diǎn)之間線段最短3同角或等角的補(bǔ)角相等4同角或等角的余角相等5過一點(diǎn)有且只有一條直線和已知直線垂直6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線短中,垂線段影豆7平行公理經(jīng)過直繳卜一點(diǎn),有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內(nèi)錯角相等,兩直線平行11同旁內(nèi)角互補(bǔ),兩直線平行12兩直線平行,同位角相等13兩直線平行,內(nèi)錯角相等14兩直線平行,同旁內(nèi)角互補(bǔ)15定理三角形兩邊的加大于第三邊16推論三角形兩邊的差小于第三邊17三角形內(nèi)角和定理三角形三個內(nèi)角的和等于180。18推論1直角三角形的兩個銳角互余19推論2三角形的一^卜角等于和它不相鄰的兩個內(nèi)角的和20推論3三角形的f卜角大于任何一個和它不相鄰的內(nèi)角21全等三角形的對應(yīng)邊、對應(yīng)角相等22邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等24推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等25邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個三角形全等26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等27定理1在角的平分線上的點(diǎn)到這個角的兩邊的距離相等28定理2到一個角的兩邊的距離相同的點(diǎn),在這個角的平分線上29角的平分線是至U角的兩邊距離相等的所有點(diǎn)的集合30等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊32等腰三角形的頂角平分線、底邊上的申線和底邊上的高互相重合33推論3等邊三角形的各角都相等,并且每一個角都等于60°34等腰三角形的判定定理如果f三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)35推論1三個角都相等的三角形是等邊三角形36推論2有一個角等于60。的等腰三角形是等邊三角形37在直角三角形中,如果一個銳角等于30。那么它所對的直角邊等于斜邊的一半38直角三角形斜邊上的中線等于斜邊上的一半39定理線段垂直平分線上的點(diǎn)和這條線段兩個端點(diǎn)的距離相等?40逆定理和一條線段兩個端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分牡41線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合42定理1關(guān)于某條直線對稱的兩個圖形是全等形43定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線44定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稠由上45逆定理如果兩個圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個圖形關(guān)卷?xiàng)l鞫對稱46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊C的平方,即a^2+bA2=cA247勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a"+b人2=廠2,那么這個三角形是直角三角形48定理四邊形的內(nèi)角和等于360。49四邊形的外角前等于360。50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)*180。51推論任意多邊的外角和等于360。52平行四邊形性質(zhì)定理1平行四邊形的對角相等53平行四邊形性質(zhì)定理2平行四邊形的對邊相等54推論夾在兩條平行線間的平行線段相等55平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60矩形性質(zhì)定理1矩形的四個角都是直角61矩形性質(zhì)定理2矩形的對角線相等62矩形判定定理1有三個角是直角的四邊形是矩形63矩形判定定理2對角線相等的平行四邊形是矩形64菱形性質(zhì)定理1菱形的四條邊都相等65英形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組時角66菱形面積=對角會積的一半,即S=(a乂b)i267菱形判定定理1四邊都相等的四邊形是菱形68菱形判定定理2對角線互相垂直的平行四邊形是菱形69正方形性質(zhì)定理1正方形的四個角都是直角,四條邊都相等70正性70正性陛2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角71定理1關(guān)于中心對稱的兩個圖形是全等的72定理2關(guān)于中心對稱的兩個圖形,對稱點(diǎn)連線醒過對稱中心,并且被對稱中心平分73逆定理如果兩個圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn).并且被這一點(diǎn)平分,那么這兩個圖形關(guān)于這一點(diǎn)對稱(1)比例的睇性質(zhì)如果a:b=c:d,那么ad=be如果ad=bc,那么a:b=c:d(2)合比,顫如果a/b=c/d,那么(a士b)/b=(c士d)/d(3)等比如果a/b=c/d,..=m/n(b+d+…+n#0),那么(a+c+...+m)/(b+d+...+n)=a/b86平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似91相似三角形到定定理1兩角對應(yīng)相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)94判定定理3三邊對應(yīng)成比例,兩三角形相似(SSS)95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個直角三角形相似96性星1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的96性97性質(zhì)定理2相似三角形周長的比等于相似比98性98性S3相似三角形面積的比等于相似比的平方99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值101圓是定點(diǎn)的距離等于定長的點(diǎn)的集合102圖的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合103國的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合104同圓或等圓的半徑相等105到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓106和已知線段兩個端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個角的平分線108到兩條平行^距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線109定理不在同一直線上的三點(diǎn)確定一個圓6117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版教育機(jī)構(gòu)勞動合同模板及教師權(quán)益保障規(guī)定3篇
- 二零二五年度環(huán)保項(xiàng)目工程承包合同3篇
- 2024現(xiàn)代學(xué)徒制企業(yè)院校學(xué)生就業(yè)實(shí)習(xí)三方服務(wù)協(xié)議3篇
- 2025版酒店客房床上用品設(shè)計(jì)合同樣本3篇
- 國際貿(mào)易質(zhì)押合同(2篇)
- 二零二五年度廢舊瀝青再生利用技術(shù)合作合同3篇
- 昆明藝術(shù)職業(yè)學(xué)院《現(xiàn)代數(shù)論》2023-2024學(xué)年第一學(xué)期期末試卷
- 中央音樂學(xué)院《概率論與復(fù)變函數(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 河西學(xué)院《數(shù)學(xué)實(shí)驗(yàn)設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 內(nèi)蒙古豐州職業(yè)學(xué)院《數(shù)學(xué)模型A》2023-2024學(xué)年第一學(xué)期期末試卷
- 氣體狀態(tài)方程課件
- 分期還款協(xié)議書
- 小區(qū)住戶手冊范本
- 浦發(fā)銀行個人信用報告異議申請表
- 海康威視-視頻監(jiān)控原理培訓(xùn)教材課件
- 江蘇省質(zhì)量通病防治手冊
- 7.激素及其作用機(jī)制
- 土壤肥料全套課件
- 畢業(yè)生延期畢業(yè)申請表
- 學(xué)校6S管理制度
- 8小時等效A聲級計(jì)算工具
評論
0/150
提交評論