版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
江西省吉安市新干縣第二中學(xué)2023年高三下學(xué)期期末數(shù)學(xué)試題測試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,角的對邊分別為,若.則角的大小為()A. B. C. D.2.在關(guān)于的不等式中,“”是“恒成立”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.某四棱錐的三視圖如圖所示,則該四棱錐的體積為()A. B. C. D.4.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()5.已知向量,,,若,則()A. B. C. D.6.已知F為拋物線y2=4x的焦點(diǎn),過點(diǎn)F且斜率為1的直線交拋物線于A,B兩點(diǎn),則||FA|﹣|FB||的值等于()A. B.8 C. D.47.若函數(shù)在處有極值,則在區(qū)間上的最大值為()A. B.2 C.1 D.38.已知函數(shù),滿足對任意的實(shí)數(shù),都有成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.9.設(shè)i是虛數(shù)單位,若復(fù)數(shù)()是純虛數(shù),則m的值為()A. B. C.1 D.310.已知雙曲線的一個(gè)焦點(diǎn)為,且與雙曲線的漸近線相同,則雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.11.如圖是來自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形,此圖由三個(gè)半圓構(gòu)成,三個(gè)半圓的直徑分別為直角三角形的斜邊,直角邊.已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C. D.12.已知某超市2018年12個(gè)月的收入與支出數(shù)據(jù)的折線圖如圖所示:根據(jù)該折線圖可知,下列說法錯(cuò)誤的是()A.該超市2018年的12個(gè)月中的7月份的收益最高B.該超市2018年的12個(gè)月中的4月份的收益最低C.該超市2018年1-6月份的總收益低于2018年7-12月份的總收益D.該超市2018年7-12月份的總收益比2018年1-6月份的總收益增長了90萬元二、填空題:本題共4小題,每小題5分,共20分。13.已知復(fù)數(shù)對應(yīng)的點(diǎn)位于第二象限,則實(shí)數(shù)的范圍為______.14.已知,滿足約束條件,則的最大值為________.15.已知雙曲線的左右焦點(diǎn)為,過作軸的垂線與相交于兩點(diǎn),與軸相交于.若,則雙曲線的離心率為_________.16.平面向量與的夾角為,,,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在銳角中,角A,B,C所對的邊分別為a,b,c.已知.(1)求的值;(2)當(dāng),且時(shí),求的面積.18.(12分)已知函數(shù).(1)討論函數(shù)f(x)的極值點(diǎn)的個(gè)數(shù);(2)若f(x)有兩個(gè)極值點(diǎn)證明.19.(12分)如圖,空間幾何體中,是邊長為2的等邊三角形,,,,平面平面,且平面平面,為中點(diǎn).(1)證明:平面;(2)求二面角平面角的余弦值.20.(12分)如圖,在平面直角坐標(biāo)系中,橢圓的離心率為,且過點(diǎn).求橢圓的方程;已知是橢圓的內(nèi)接三角形,①若點(diǎn)為橢圓的上頂點(diǎn),原點(diǎn)為的垂心,求線段的長;②若原點(diǎn)為的重心,求原點(diǎn)到直線距離的最小值.21.(12分)己知,函數(shù).(1)若,解不等式;(2)若函數(shù),且存在使得成立,求實(shí)數(shù)的取值范圍.22.(10分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,點(diǎn)的極坐標(biāo)為.(1)求的直角坐標(biāo)方程和的直角坐標(biāo);(2)設(shè)與交于,兩點(diǎn),線段的中點(diǎn)為,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
由正弦定理化簡已知等式可得,結(jié)合,可得,結(jié)合范圍,可得,可得,即可得解的值.【詳解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故選A.【點(diǎn)睛】本題主要考查了正弦定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.2、C【解析】
討論當(dāng)時(shí),是否恒成立;討論當(dāng)恒成立時(shí),是否成立,即可選出正確答案.【詳解】解:當(dāng)時(shí),,由開口向上,則恒成立;當(dāng)恒成立時(shí),若,則不恒成立,不符合題意,若時(shí),要使得恒成立,則,即.所以“”是“恒成立”的充要條件.故選:C.【點(diǎn)睛】本題考查了命題的關(guān)系,考查了不等式恒成立問題.對于探究兩個(gè)命題的關(guān)系時(shí),一般分成兩步,若,則推出是的充分條件;若,則推出是的必要條件.3、B【解析】
由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,由此求出四棱錐的體積.【詳解】由三視圖知該四棱錐是底面為正方形,且一側(cè)棱垂直于底面,畫出四棱錐的直觀圖,如圖所示:則該四棱錐的體積為.故選:B.【點(diǎn)睛】本題考查了利用三視圖求幾何體體積的問題,是基礎(chǔ)題.4、D【解析】
由題意利用兩個(gè)向量坐標(biāo)形式的運(yùn)算法則,兩個(gè)向量平行、垂直的性質(zhì),得出結(jié)論.【詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標(biāo)對應(yīng)不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標(biāo)對應(yīng)不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.【點(diǎn)睛】本題主要考查兩個(gè)向量坐標(biāo)形式的運(yùn)算,兩個(gè)向量平行、垂直的性質(zhì),屬于基礎(chǔ)題.5、A【解析】
根據(jù)向量坐標(biāo)運(yùn)算求得,由平行關(guān)系構(gòu)造方程可求得結(jié)果.【詳解】,,解得:故選:【點(diǎn)睛】本題考查根據(jù)向量平行關(guān)系求解參數(shù)值的問題,涉及到平面向量的坐標(biāo)運(yùn)算;關(guān)鍵是明確若兩向量平行,則.6、C【解析】
將直線方程代入拋物線方程,根據(jù)根與系數(shù)的關(guān)系和拋物線的定義即可得出的值.【詳解】F(1,0),故直線AB的方程為y=x﹣1,聯(lián)立方程組,可得x2﹣6x+1=0,設(shè)A(x1,y1),B(x2,y2),由根與系數(shù)的關(guān)系可知x1+x2=6,x1x2=1.由拋物線的定義可知:|FA|=x1+1,|FB|=x2+1,∴||FA|﹣|FB||=|x1﹣x2|=.故選C.【點(diǎn)睛】本題考查了拋物線的定義,直線與拋物線的位置關(guān)系,屬于中檔題.7、B【解析】
根據(jù)極值點(diǎn)處的導(dǎo)數(shù)為零先求出的值,然后再按照求函數(shù)在連續(xù)的閉區(qū)間上最值的求法計(jì)算即可.【詳解】解:由已知得,,,經(jīng)檢驗(yàn)滿足題意.,.由得;由得或.所以函數(shù)在上遞增,在上遞減,在上遞增.則,,由于,所以在區(qū)間上的最大值為2.故選:B.【點(diǎn)睛】本題考查了導(dǎo)數(shù)極值的性質(zhì)以及利用導(dǎo)數(shù)求函數(shù)在連續(xù)的閉區(qū)間上的最值問題的基本思路,屬于中檔題.8、B【解析】
由題意可知函數(shù)為上為減函數(shù),可知函數(shù)為減函數(shù),且,由此可解得實(shí)數(shù)的取值范圍.【詳解】由題意知函數(shù)是上的減函數(shù),于是有,解得,因此,實(shí)數(shù)的取值范圍是.故選:B.【點(diǎn)睛】本題考查利用分段函數(shù)的單調(diào)性求參數(shù),一般要分析每支函數(shù)的單調(diào)性,同時(shí)還要考慮分段點(diǎn)處函數(shù)值的大小關(guān)系,考查運(yùn)算求解能力,屬于中等題.9、A【解析】
根據(jù)復(fù)數(shù)除法運(yùn)算化簡,結(jié)合純虛數(shù)定義即可求得m的值.【詳解】由復(fù)數(shù)的除法運(yùn)算化簡可得,因?yàn)槭羌兲摂?shù),所以,∴,故選:A.【點(diǎn)睛】本題考查了復(fù)數(shù)的概念和除法運(yùn)算,屬于基礎(chǔ)題.10、B【解析】
根據(jù)焦點(diǎn)所在坐標(biāo)軸和漸近線方程設(shè)出雙曲線的標(biāo)準(zhǔn)方程,結(jié)合焦點(diǎn)坐標(biāo)求解.【詳解】∵雙曲線與的漸近線相同,且焦點(diǎn)在軸上,∴可設(shè)雙曲線的方程為,一個(gè)焦點(diǎn)為,∴,∴,故的標(biāo)準(zhǔn)方程為.故選:B【點(diǎn)睛】此題考查根據(jù)雙曲線的漸近線和焦點(diǎn)求解雙曲線的標(biāo)準(zhǔn)方程,易錯(cuò)點(diǎn)在于漏掉考慮焦點(diǎn)所在坐標(biāo)軸導(dǎo)致方程形式出錯(cuò).11、D【解析】
由半圓面積之比,可求出兩個(gè)直角邊的長度之比,從而可知,結(jié)合同角三角函數(shù)的基本關(guān)系,即可求出,由二倍角公式即可求出.【詳解】解:由題意知,以為直徑的半圓面積,以為直徑的半圓面積,則,即.由,得,所以.故選:D.【點(diǎn)睛】本題考查了同角三角函數(shù)的基本關(guān)系,考查了二倍角公式.本題的關(guān)鍵是由面積比求出角的正切值.12、D【解析】
用收入減去支出,求得每月收益,然后對選項(xiàng)逐一分析,由此判斷出說法錯(cuò)誤的選項(xiàng).【詳解】用收入減去支出,求得每月收益(萬元),如下表所示:月份123456789101112收益203020103030604030305030所以月收益最高,A選項(xiàng)說法正確;月收益最低,B選項(xiàng)說法正確;月總收益萬元,月總收益萬元,所以前個(gè)月收益低于后六個(gè)月收益,C選項(xiàng)說法正確,后個(gè)月收益比前個(gè)月收益增長萬元,所以D選項(xiàng)說法錯(cuò)誤.故選D.【點(diǎn)睛】本小題主要考查圖表分析,考查收益的計(jì)算方法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由復(fù)數(shù)對應(yīng)的點(diǎn),在第二象限,得,且,從而求出實(shí)數(shù)的范圍.【詳解】解:∵復(fù)數(shù)對應(yīng)的點(diǎn)位于第二象限,∴,且,∴,故答案為:.【點(diǎn)睛】本題主要考查復(fù)數(shù)與復(fù)平面內(nèi)對應(yīng)點(diǎn)之間的關(guān)系,解不等式,且是解題的關(guān)鍵,屬于基礎(chǔ)題.14、【解析】
根據(jù)題意,畫出可行域,將目標(biāo)函數(shù)看成可行域內(nèi)的點(diǎn)與原點(diǎn)距離的平方,利用圖象即可求解.【詳解】可行域如圖所示,易知當(dāng),時(shí),的最大值為.故答案為:9.【點(diǎn)睛】本題考查了利用幾何法解決非線性規(guī)劃問題,屬于中檔題.15、【解析】
由已知可得,結(jié)合雙曲線的定義可知,結(jié)合,從而可求出離心率.【詳解】解:,,又,則.,,,即解得,即.故答案為:.【點(diǎn)睛】本題考查了雙曲線的定義,考查了雙曲線的性質(zhì).本題的關(guān)鍵是根據(jù)幾何關(guān)系,分析出.關(guān)于圓錐曲線的問題,一般如果能結(jié)合幾何性質(zhì),可大大減少計(jì)算量.16、【解析】
由平面向量模的計(jì)算公式,直接計(jì)算即可.【詳解】因?yàn)槠矫嫦蛄颗c的夾角為,所以,所以;故答案為【點(diǎn)睛】本題主要考查平面向量模的計(jì)算,只需先求出向量的數(shù)量積,進(jìn)而即可求出結(jié)果,屬于基礎(chǔ)題型.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)利用二倍角公式求解即可,注意隱含條件.(2)利用(1)中的結(jié)論,結(jié)合正弦定理和同角三角函數(shù)的關(guān)系易得的值,又由求出的值,最后由正弦定理求出的值,根據(jù)三角形的面積公式即可計(jì)算得出.【詳解】(1)由已知可得,所以,因?yàn)樵阡J角中,,所以(2)因?yàn)?,所以,因?yàn)槭卿J角三角形,所以,所以.由正弦定理可得:,所以,所以【點(diǎn)睛】此類問題是高考的??碱}型,主要考查了正弦定理、三角函數(shù)以及三角恒等變換等知識(shí),同時(shí)考查了學(xué)生的基本運(yùn)算能力和利用三角公式進(jìn)行恒等變換的技能,屬于中檔題.18、(1)見解析(2)見解析【解析】
(1)求得函數(shù)的定義域和導(dǎo)函數(shù),對分成三種情況進(jìn)行分類討論,判斷出的極值點(diǎn)個(gè)數(shù).(2)由(1)知,結(jié)合韋達(dá)定理求得的關(guān)系式,由此化簡的表達(dá)式為,通過構(gòu)造函數(shù)法,結(jié)合導(dǎo)數(shù)證得,由此證得成立.【詳解】(1)函數(shù)的定義域?yàn)榈茫╥)當(dāng)時(shí);,因?yàn)闀r(shí),時(shí),,所以是函數(shù)的一個(gè)極小值點(diǎn);(ii)若時(shí),若,即時(shí),,在是減函數(shù),無極值點(diǎn).若,即時(shí),有兩根,不妨設(shè)當(dāng)和時(shí),,當(dāng)時(shí),,是函數(shù)的兩個(gè)極值點(diǎn),綜上所述時(shí),僅有一個(gè)極值點(diǎn);時(shí),無極值點(diǎn);時(shí),有兩個(gè)極值點(diǎn).(2)由(1)知,當(dāng)且僅當(dāng)時(shí),有極小值點(diǎn)和極大值點(diǎn),且是方程的兩根,,則所以設(shè),則,又,即,所以所以是上的單調(diào)減函數(shù),有兩個(gè)極值點(diǎn),則【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值點(diǎn),考查利用導(dǎo)數(shù)證明不等式,考查分類討論的數(shù)學(xué)思想方法,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.19、(1)證明見解析(2)【解析】
(1)分別取,的中點(diǎn),,連接,,,,,要證明平面,只需證明面∥面即可.(2)以點(diǎn)為原點(diǎn),以為軸,以為軸,以為軸,建立空間直角坐標(biāo)系,分別計(jì)算面的法向量,面的法向量可取,并判斷二面角為銳角,再利用計(jì)算即可.【詳解】(1)證明:分別取,的中點(diǎn),,連接,,,,.由平面平面,且交于,平面,有平面,由平面平面,且交于,平面,有平面,所以∥,又平面,平面,所以∥平面,由,有,∥,又平面,平面,所以∥平面,由∥平面,∥平面,,所以平面∥平面,所以∥平面(2)以點(diǎn)為原點(diǎn),以為軸,以為軸,以為軸,建立如圖所示空間直角坐標(biāo)系由面,所以面的法向量可取,點(diǎn),點(diǎn),點(diǎn),,,設(shè)面的法向量,所以,取,二面角的平面角為,則為銳角.所以【點(diǎn)睛】本題考查由面面平行證明線面平行以及向量法求二面角的余弦值,考查學(xué)生的運(yùn)算能力,在做此類題時(shí),一定要準(zhǔn)確寫出點(diǎn)的坐標(biāo).20、;①;②.【解析】
根據(jù)題意列出方程組求解即可;①由原點(diǎn)為的垂心可得,軸,設(shè),則,,根據(jù)求出線段的長;②設(shè)中點(diǎn)為,直線與橢圓交于,兩點(diǎn),為的重心,則,設(shè):,,,則,當(dāng)斜率不存在時(shí),則到直線的距離為1,,由,則,,,得出,根據(jù)求解即可.【詳解】解:設(shè)焦距為,由題意知:,因此,橢圓的方程為:;①由題意知:,故軸,設(shè),則,,,解得:或,,不重合,故,,故;②設(shè)中點(diǎn)為,直線與橢圓交于,兩點(diǎn),為的重心,則,當(dāng)斜率不存在時(shí),則到直線的距離為1;設(shè):,,,則,,則,則:,,代入式子得:,設(shè)到直線的距離為,則時(shí),;綜上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 宿舍樓課課程設(shè)計(jì)
- 二零二五年度PVC建筑材料采購合同
- 2025年度生態(tài)環(huán)保型安置房建設(shè)一體化服務(wù)合同
- 2024年貨物采購招投標(biāo)流程規(guī)范3篇
- 硬件描述語言課程設(shè)計(jì)
- 2024年綠色能源項(xiàng)目投資委托服務(wù)合同3篇
- 電液課程設(shè)計(jì)
- 成績管理系統(tǒng)課程設(shè)計(jì)er圖
- 2025年新型APP內(nèi)容合作與分成合同3篇
- 2025年度班主任學(xué)生藝術(shù)素養(yǎng)提升服務(wù)合同3篇
- 普外科醫(yī)療組長競聘演講
- 北京市朝陽區(qū)2022-2023學(xué)年三年級上學(xué)期英語期末試卷
- GB/T 9755-2024合成樹脂乳液墻面涂料
- 嗶哩嗶哩MATES人群資產(chǎn)經(jīng)營白皮書【嗶哩嗶哩】
- 醫(yī)學(xué)生創(chuàng)新創(chuàng)業(yè)基礎(chǔ)智慧樹知到期末考試答案2024年
- 大學(xué)生國家安全教育智慧樹知到期末考試答案2024年
- 魚骨圖PPT模板精品教案0002
- 冠狀動(dòng)脈造影基本知識(shí)-
- 油墨組成和分類
- DB37T 5175-2021 建筑與市政工程綠色施工技術(shù)標(biāo)準(zhǔn)
- 自動(dòng)噴漆線使用說明書
評論
0/150
提交評論