版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
湖南省瀏陽市三校2023屆高中畢業(yè)班第二次模擬(數(shù)學試題理)注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點為雙曲線的右焦點,直線與雙曲線交于A,B兩點,若,則的面積為()A. B. C. D.2.在平面直角坐標系中,若不等式組所表示的平面區(qū)域內(nèi)存在點,使不等式成立,則實數(shù)的取值范圍為()A. B. C. D.3.在中,內(nèi)角A,B,C所對的邊分別為a,b,c,且.若,的面積為,則()A.5 B. C.4 D.164.已知等差數(shù)列滿足,公差,且成等比數(shù)列,則A.1 B.2 C.3 D.45.已知復數(shù),則對應的點在復平面內(nèi)位于()A.第一象限 B.第二象限C.第三象限 D.第四象限6.已知三棱錐且平面,其外接球體積為()A. B. C. D.7.在三棱錐中,,,則三棱錐外接球的表面積是()A. B. C. D.8.已知定義在上的偶函數(shù)滿足,且在區(qū)間上是減函數(shù),令,則的大小關系為()A. B.C. D.9.執(zhí)行如圖所示的程序框圖,則輸出的的值是()A.8 B.32 C.64 D.12810.是的()條件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要11.二項式的展開式中只有第六項的二項式系數(shù)最大,則展開式中的常數(shù)項是()A.180 B.90 C.45 D.36012.若復數(shù),其中為虛數(shù)單位,則下列結(jié)論正確的是()A.的虛部為 B. C.的共軛復數(shù)為 D.為純虛數(shù)二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,滿足,,,則的取值范圍為_________.14.設等差數(shù)列的前項和為,若,,則數(shù)列的公差________,通項公式________.15.函數(shù)的定義域為,其圖象如圖所示.函數(shù)是定義域為的奇函數(shù),滿足,且當時,.給出下列三個結(jié)論:①;②函數(shù)在內(nèi)有且僅有個零點;③不等式的解集為.其中,正確結(jié)論的序號是________.16.二項式的展開式中項的系數(shù)為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.18.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)在△ABC中,角A,B,C所對的邊分別是a,b,c,若滿足,,,求.19.(12分)在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程以及曲線的直角坐標方程;(2)若直線與曲線、曲線在第一象限交于兩點,且,點的坐標為,求的面積.20.(12分)若函數(shù)為奇函數(shù),且時有極小值.(1)求實數(shù)的值與實數(shù)的取值范圍;(2)若恒成立,求實數(shù)的取值范圍.21.(12分)已知函數(shù).若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對稱點.(1)若a,且a≠0,證明:函數(shù)有局部對稱點;(2)若函數(shù)在定義域內(nèi)有局部對稱點,求實數(shù)c的取值范圍;(3)若函數(shù)在R上有局部對稱點,求實數(shù)m的取值范圍.22.(10分)表示,中的最大值,如,己知函數(shù),.(1)設,求函數(shù)在上的零點個數(shù);(2)試探討是否存在實數(shù),使得對恒成立?若存在,求的取值范圍;若不存在,說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,設,得,求出的值,即得解.【詳解】設雙曲線C的左焦點為,連接,由對稱性可知四邊形是平行四邊形,所以,.設,則,又.故,所以.故選:D【點睛】本題主要考查雙曲線的簡單幾何性質(zhì),考查余弦定理解三角形和三角形面積的計算,意在考查學生對這些知識的理解掌握水平.2、B【解析】
依據(jù)線性約束條件畫出可行域,目標函數(shù)恒過,再分別討論的正負進一步確定目標函數(shù)與可行域的基本關系,即可求解【詳解】作出不等式對應的平面區(qū)域,如圖所示:其中,直線過定點,當時,不等式表示直線及其左邊的區(qū)域,不滿足題意;當時,直線的斜率,不等式表示直線下方的區(qū)域,不滿足題意;當時,直線的斜率,不等式表示直線上方的區(qū)域,要使不等式組所表示的平面區(qū)域內(nèi)存在點,使不等式成立,只需直線的斜率,解得.綜上可得實數(shù)的取值范圍為,故選:B.【點睛】本題考查由目標函數(shù)有解求解參數(shù)取值范圍問題,分類討論與數(shù)形結(jié)合思想,屬于中檔題3、C【解析】
根據(jù)正弦定理邊化角以及三角函數(shù)公式可得,再根據(jù)面積公式可求得,再代入余弦定理求解即可.【詳解】中,,由正弦定理得,又,∴,又,∴,∴,又,∴.∵,∴,∵,∴由余弦定理可得,∴,可得.故選:C【點睛】本題主要考查了解三角形中正余弦定理與面積公式的運用,屬于中檔題.4、D【解析】
先用公差表示出,結(jié)合等比數(shù)列求出.【詳解】,因為成等比數(shù)列,所以,解得.【點睛】本題主要考查等差數(shù)列的通項公式.屬于簡單題,化歸基本量,尋求等量關系是求解的關鍵.5、A【解析】
利用復數(shù)除法運算化簡,由此求得對應點所在象限.【詳解】依題意,對應點為,在第一象限.故選A.【點睛】本小題主要考查復數(shù)除法運算,考查復數(shù)對應點的坐標所在象限,屬于基礎題.6、A【解析】
由,平面,可將三棱錐還原成長方體,則三棱錐的外接球即為長方體的外接球,進而求解.【詳解】由題,因為,所以,設,則由,可得,解得,可將三棱錐還原成如圖所示的長方體,則三棱錐的外接球即為長方體的外接球,設外接球的半徑為,則,所以,所以外接球的體積.故選:A【點睛】本題考查三棱錐的外接球體積,考查空間想象能力.7、B【解析】
取的中點,連接、,推導出,設設球心為,和的中心分別為、,可得出平面,平面,利用勾股定理計算出球的半徑,再利用球體的表面積公式可得出結(jié)果.【詳解】取的中點,連接、,由和都是正三角形,得,,則,則,由勾股定理的逆定理,得.設球心為,和的中心分別為、.由球的性質(zhì)可知:平面,平面,又,由勾股定理得.所以外接球半徑為.所以外接球的表面積為.故選:B.【點睛】本題考查三棱錐外接球表面積的計算,解題時要分析幾何體的結(jié)構,找出球心的位置,并以此計算出球的半徑長,考查推理能力與計算能力,屬于中等題.8、C【解析】
可設,根據(jù)在上為偶函數(shù)及便可得到:,可設,,且,根據(jù)在上是減函數(shù)便可得出,從而得出在上單調(diào)遞增,再根據(jù)對數(shù)的運算得到、、的大小關系,從而得到的大小關系.【詳解】解:因為,即,又,設,根據(jù)條件,,;若,,且,則:;在上是減函數(shù);;;在上是增函數(shù);所以,故選:C【點睛】考查偶函數(shù)的定義,減函數(shù)及增函數(shù)的定義,根據(jù)單調(diào)性定義判斷一個函數(shù)單調(diào)性的方法和過程:設,通過條件比較與,函數(shù)的單調(diào)性的應用,屬于中檔題.9、C【解析】
根據(jù)給定的程序框圖,逐次計算,結(jié)合判斷條件,即可求解.【詳解】由題意,執(zhí)行上述程序框圖,可得第1次循環(huán),滿足判斷條件,;第2次循環(huán),滿足判斷條件,;第3次循環(huán),滿足判斷條件,;第4次循環(huán),滿足判斷條件,;不滿足判斷條件,輸出.故選:C.【點睛】本題主要考查了循環(huán)結(jié)構的程序框圖的計算與輸出,其中解答中認真審題,逐次計算,結(jié)合判斷條件求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.10、B【解析】
利用充分條件、必要條件與集合包含關系之間的等價關系,即可得出?!驹斀狻吭O對應的集合是,由解得且對應的集合是,所以,故是的必要不充分條件,故選B。【點睛】本題主要考查充分條件、必要條件的判斷方法——集合關系法。設,如果,則是的充分條件;如果B則是的充分不必要條件;如果,則是的必要條件;如果,則是的必要不充分條件。11、A【解析】試題分析:因為的展開式中只有第六項的二項式系數(shù)最大,所以,,令,則,.考點:1.二項式定理;2.組合數(shù)的計算.12、D【解析】
將復數(shù)整理為的形式,分別判斷四個選項即可得到結(jié)果.【詳解】的虛部為,錯誤;,錯誤;,錯誤;,為純虛數(shù),正確本題正確選項:【點睛】本題考查復數(shù)的模長、實部與虛部、共軛復數(shù)、復數(shù)的分類的知識,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
設,,,,由,,,根據(jù)平面向量模的幾何意義,可得A點軌跡為以O為圓心、1為半徑的圓,C點軌跡為以B為圓心、1為半徑的圓,為的距離,利用數(shù)形結(jié)合求解.【詳解】設,,,,如圖所示:因為,,,所以A點軌跡為以O為圓心、1為半徑的圓,C點軌跡為以B為圓心、1為半徑的圓,則即的距離,由圖可知,.故答案為:【點睛】本題主要考查平面向量的模及運算的幾何意義,還考查了數(shù)形結(jié)合的方法,屬于中檔題.14、2【解析】
直接利用等差數(shù)列公式計算得到答案.【詳解】,,解得,,故.故答案為:2;.【點睛】本題考查了等差數(shù)列的基本計算,意在考查學生的計算能力.15、①③【解析】
利用奇函數(shù)和,得出函數(shù)的周期為,由圖可直接判斷①;利用賦值法求得,結(jié)合,進而可判斷函數(shù)在內(nèi)的零點個數(shù),可判斷②的正誤;采用換元法,結(jié)合圖象即可得解,可判斷③的正誤.綜合可得出結(jié)論.【詳解】因為函數(shù)是奇函數(shù),所以,又,所以,即,所以,函數(shù)的周期為.對于①,由于函數(shù)是上的奇函數(shù),所以,,故①正確;對于②,,令,可得,得,所以,函數(shù)在區(qū)間上的零點為和.因為函數(shù)的周期為,所以函數(shù)在內(nèi)有個零點,分別是、、、、,故②錯誤;對于③,令,則需求的解集,由圖象可知,,所以,故③正確.故答案為:①③.【點睛】本題考查函數(shù)的圖象與性質(zhì),涉及奇偶性、周期性和零點等知識點,考查學生分析問題的能力和數(shù)形結(jié)合能力,屬于中等題.16、15【解析】
由題得,,令,解得,代入可得展開式中含x6項的系數(shù).【詳解】由題得,,令,解得,所以二項式的展開式中項的系數(shù)為.故答案為:15【點睛】本題主要考查了二項式定理的應用,考查了利用通項公式去求展開式中某項的系數(shù)問題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)令可求得的值,令時,由可得出,兩式相減可得的表達式,然后對是否滿足在時的表達式進行檢驗,由此可得出數(shù)列的通項公式;(2)求出數(shù)列的通項公式,對分奇數(shù)和偶數(shù)兩種情況討論,利用奇偶分組求和法結(jié)合等差數(shù)列和等比數(shù)列的求和公式可求得結(jié)果.【詳解】(1),當時,;當時,由得,兩式相減得,.滿足.因此,數(shù)列的通項公式為;(2).①當為奇數(shù)時,;②當為偶數(shù)時,.綜上所述,.【點睛】本題考查數(shù)列通項的求解,同時也考查了奇偶分組求和法,考查計算能力,屬于中等題.18、(1);(2)【解析】
(1)化簡得到,取,解得答案.(2),解得,根據(jù)余弦定理得到,再用一次余弦定理解得答案.【詳解】(1).取,解得.(2),因為,故,.根據(jù)余弦定理:,..【點睛】本題考查了三角恒等變換,三角函數(shù)單調(diào)性,余弦定理,意在考查學生對于三角函數(shù)知識的綜合應用.19、(1)的極坐標方程為,的直角坐標方程為(2)【解析】
(1)先把曲線的參數(shù)方程消參后,轉(zhuǎn)化為普通方程,再利用求得極坐標方程.將,化為,再利用求得曲線的普通方程.(2)設直線的極角,代入,得,將代入,得,由,得,即,從而求得,,從而求得,再利用求解.【詳解】(1)依題意,曲線,即,故,即.因為,故,即,即.(2)將代入,得,將代入,得,由,得,得,解得,則.又,故,故的面積.【點睛】本題考查極坐標方程與直角坐標方程、參數(shù)方程與普通方程的轉(zhuǎn)化、極坐標的幾何意義,還考查推理論證能力以及數(shù)形結(jié)合思想,屬于中檔題.20、(1),;(2)【解析】
(1)由奇函數(shù)可知在定義域上恒成立,由此建立方程,即可求出實數(shù)的值;對函數(shù)進行求導,,通過導數(shù)求出,若,則恒成立不符合題意,當,可證明,此時時有極小值.(2)可知,進而得到,令,通過導數(shù)可知在上為單調(diào)減函數(shù),由可得,從而可求實數(shù)的取值范圍.【詳解】(1)由函數(shù)為奇函數(shù),得在定義域上恒成立,所以,化簡可得,所以.則,令,則.故當時,;當時,,故在上遞減,在上遞增,若,則恒成立,單調(diào)遞增,無極值點;所以,解得,取,則又函數(shù)的圖象在區(qū)間上連續(xù)不間斷,故由函數(shù)零點存在性定理知在區(qū)間上,存在為函數(shù)的零點,為極小值,所以,的取值范圍是.(2)由滿足,代入,消去可得.構造函數(shù),所以,當時,,即恒成立,故在上為單調(diào)減函數(shù),其中.則可轉(zhuǎn)化為,故,由,設,可得當時,則在上遞增,故.綜上,的取值范圍是.【點睛】本題考查了利用導數(shù)研究函數(shù)的單調(diào)性,考查了利用導數(shù)求函數(shù)的最值,考查了奇函數(shù)的定義,考查了轉(zhuǎn)化的思想.對于恒成立的問題,常轉(zhuǎn)化為求的最小值,使;對于恒成立的問題,常轉(zhuǎn)化為求的最大值,使.21、(1)見解析(2)(3)【解析】
(1)若函數(shù)有局部對稱點,則,即有解,即可求證;(2)由題可得在內(nèi)有解,即方程在區(qū)間上有解,則,設,利用導函數(shù)求得的范圍,即可求得的范圍;(3)由題可得在上有解,即在上有解,設,則可變形為方程在區(qū)間內(nèi)有解,進而求解即可.【詳解】(1)證明:由得,代入得,則得到關于x的方程,由于且,所以,所以函數(shù)必有局部對稱點(2)解:由題,因為函數(shù)在定義域內(nèi)有局部對稱點所以在內(nèi)有解,即方程在區(qū)間上有解,所以,設,則,所以令,則,當時,,故函數(shù)在區(qū)間上單調(diào)遞減,當時,,故函數(shù)在區(qū)間上單調(diào)遞增,所以,因為,,所以,所以,所以(3)解:由題,,由于,所以,所以(*)在R上有解,令,則,所以方程(*)變?yōu)樵趨^(qū)間內(nèi)有解,需滿足條件:,即,得【點睛】本題考查函數(shù)的局部對稱點的理解,利用導函數(shù)研究函數(shù)的最值問題,考查轉(zhuǎn)化思想與運算能力.22、(1)個;(1)存在,.【解析】試題分析:(1)設,對其求導,及最小值,從而得到的解析式,進一步求值域即可;(1)分別對和兩種情況進行討論,得到的解析式,進一步構造,通過求導得到最值,得到滿足條件的的范圍.試題解析:(1)設,.............1分令,得遞增;令,得遞減,.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 塑料鞋生產(chǎn)過程中的環(huán)境保護考核試卷
- 2025年度解除住宅租賃合同及物業(yè)管理協(xié)議
- 商業(yè)綜合體物業(yè)管理法律風險與合規(guī)考核試卷
- 寶石雕刻技法研究考核試卷
- 2025年度跨境電子商務合同(含支付與結(jié)算)2篇
- 2025年度企業(yè)消防安全評估與改造合同模板
- 冷凍飲品行業(yè)市場潛力挖掘與拓展策略考核試卷
- 體育用品行業(yè)智能物流與供應鏈優(yōu)化考核試卷
- 農(nóng)業(yè)智能化技術考核試卷
- 城市配送與物流配送環(huán)節(jié)的應急物流考核試卷
- 下肢皮牽引護理PPT課件(19頁PPT)
- 臺資企業(yè)A股上市相關資料
- 電 梯 工 程 預 算 書
- 參會嘉賓簽到表
- 機械車間員工績效考核表
- 形式發(fā)票格式2 INVOICE
- 2.48低危胸痛患者后繼治療評估流程圖
- 人力資源管理之績效考核 一、什么是績效 所謂績效簡單的講就是對
- 山東省醫(yī)院目錄
- 云南地方本科高校部分基礎研究
- 廢品管理流程圖
評論
0/150
提交評論