版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022年湖北省孝感市成考專(zhuān)升本高等數(shù)學(xué)一自考預(yù)測(cè)試題(含答案及部分解析)學(xué)校:________班級(jí):________姓名:________考號(hào):________
一、單選題(20題)1.當(dāng)x→0時(shí),3x2+2x3是3x2的()。A.高階無(wú)窮小B.低階無(wú)窮小C.同階無(wú)窮小但不是等價(jià)無(wú)窮小D.等價(jià)無(wú)窮小
2.方程2x2-y2=1表示的二次曲面是()。A.球面B.柱面C.旋轉(zhuǎn)拋物面D.圓錐面
3.
若y1·y2為二階線性常系數(shù)微分方程y〞+p1y'+p2y=0的兩個(gè)特解,則C1y1+C2y2().A.為所給方程的解,但不是通解
B.為所給方程的解,但不一定是通解
C.為所給方程的通解
D.不為所給方程的解
4.函數(shù)y=x2-x+1在區(qū)間[-1,3]上滿(mǎn)足拉格朗日中值定理的ξ=A.A.-3/4B.0C.3/4D.1
5.級(jí)數(shù)()。A.絕對(duì)收斂B.條件收斂C.發(fā)散D.收斂性與k有關(guān)
6.
7.
8.
A.
B.
C.
D.
9.
10.
11.設(shè)y=cos4x,則dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx12.()A.A.sinx+C
B.cosx+C
C.-sinx+C
D.-cosx+C
13.設(shè)y=2^x,則dy等于().
A.x.2x-1dx
B.2x-1dx
C.2xdx
D.2xln2dx
14.函數(shù)f(x)=lnz在區(qū)間[1,2]上拉格朗日公式中的ε等于()。
A.ln2
B.ln1
C.lne
D.
15.
16.A.有一個(gè)拐點(diǎn)B.有兩個(gè)拐點(diǎn)C.有三個(gè)拐點(diǎn)D.無(wú)拐點(diǎn)
17.A.x2+C
B.x2-x+C
C.2x2+x+C
D.2x2+C
18.
19.
20.方程z=x2+y2表示的曲面是()
A.橢球面B.旋轉(zhuǎn)拋物面C.球面D.圓錐面二、填空題(20題)21.
22.設(shè)f(0)=0,f'(0)存在,則23.
24.
25.
26.
27.28.
29.
30.
31.設(shè)y=ex,則dy=_________。
32.
33.
34.
35.函數(shù)f(x)=ex,g(x)=sinx,則f[g(x)]=__________。36.
37.
38.
39.
40.三、計(jì)算題(20題)41.42.求微分方程的通解.43.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(diǎn)(1,1)處的切線l的方程.44.將f(x)=e-2X展開(kāi)為x的冪級(jí)數(shù).45.當(dāng)x一0時(shí)f(x)與sin2x是等價(jià)無(wú)窮小量,則46.證明:47.研究級(jí)數(shù)的收斂性(即何時(shí)絕對(duì)收斂,何時(shí)條件收斂,何時(shí)發(fā)散,其中常數(shù)a>0.48.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.
49.已知某商品市場(chǎng)需求規(guī)律為Q=100e-0.25p,當(dāng)p=10時(shí),若價(jià)格上漲1%,需求量增(減)百分之幾?
50.
51.
52.求曲線在點(diǎn)(1,3)處的切線方程.53.54.
55.56.設(shè)拋物線Y=1-x2與x軸的交點(diǎn)為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長(zhǎng)為2x,面積為
S(x).
(1)寫(xiě)出S(x)的表達(dá)式;
(2)求S(x)的最大值.
57.
58.求微分方程y"-4y'+4y=e-2x的通解.
59.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點(diǎn).60.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.四、解答題(10題)61.設(shè)區(qū)域D為:
62.
63.計(jì)算,其中D為曲線y=x,y=1,x=0圍成的平面區(qū)域.64.65.
66.
67.
68.
69.求微分方程y"+4y=e2x的通解。
70.五、高等數(shù)學(xué)(0題)71.已知某廠生產(chǎn)x件產(chǎn)品的成本為
問(wèn):若使平均成本最小,應(yīng)生產(chǎn)多少件產(chǎn)品?
六、解答題(0題)72.
參考答案
1.D本題考查的知識(shí)點(diǎn)為無(wú)窮小階的比較。
由于,可知點(diǎn)x→0時(shí)3x2+2x3與3x2為等價(jià)無(wú)窮小,故應(yīng)選D。
2.B
3.B
4.D
5.A本題考查的知識(shí)點(diǎn)為級(jí)數(shù)的絕對(duì)收斂與條件收斂。
由于的p級(jí)數(shù),可知為收斂級(jí)數(shù)。
可知收斂,所給級(jí)數(shù)絕對(duì)收斂,故應(yīng)選A。
6.D
7.C解析:
8.B本題考查的知識(shí)點(diǎn)為交換二次積分次序。由所給二次積分可知積分區(qū)域D可以表示為1≤y≤2,y≤x≤2,交換積分次序后,D可以表示為1≤x≤2,1≤y≤x,故應(yīng)選B。
9.B解析:
10.C
11.B
12.A
13.D南微分的基本公式可知,因此選D.
14.D由拉格朗日定理
15.A
16.D
17.B本題考查的知識(shí)點(diǎn)為不定積分運(yùn)算.
因此選B.
18.B
19.C
20.B旋轉(zhuǎn)拋物面的方程為z=x2+y2.
21.(12)(01)22.f'(0)本題考查的知識(shí)點(diǎn)為導(dǎo)數(shù)的定義.
由于f(0)=0,f'(0)存在,因此
本題如果改為計(jì)算題,其得分率也會(huì)下降,因?yàn)橛行┛忌33霈F(xiàn)利用洛必達(dá)法則求極限而導(dǎo)致運(yùn)算錯(cuò)誤:
因?yàn)轭}設(shè)中只給出f'(0)存在,并沒(méi)有給出,f'(z)(x≠0)存在,也沒(méi)有給出,f'(x)連續(xù)的條件,因此上述運(yùn)算的兩步都錯(cuò)誤.23.e-1/2
24.2
25.>
26.
27.
28.
29.
30.
31.exdx
32.
33.
34.-3e-3x-3e-3x
解析:35.由f(x)=exg(x)=sinx;∴f[g(x)]=f[sinx]=esinx
36.
37.38.1
39.-2sin2-2sin2解析:
40.
41.
42.
43.
44.45.由等價(jià)無(wú)窮小量的定義可知
46.
47.
48.由二重積分物理意義知
49.需求規(guī)律為Q=100ep-2.25p
∴當(dāng)P=10時(shí)價(jià)格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當(dāng)P=10時(shí),價(jià)格上漲1%需求量減少2.5%
50.
51.
52.曲線方程為,點(diǎn)(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點(diǎn)
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
53.54.由一階線性微分方程通解公式有
55.
56.
57.
則
58.解:原方程對(duì)應(yīng)的齊次方程為y"-4y'+4y=0,
59.
列表:
說(shuō)明
60.函數(shù)的定義域?yàn)?/p>
注意
61.利用極坐標(biāo),區(qū)域D可以表示為0≤θ≤π,0≤r≤2本題考查的知識(shí)點(diǎn)為二重積分的計(jì)算(極坐標(biāo)系).
如果積分區(qū)域?yàn)閳A域或圓的一部分,被積函數(shù)為f(x2+y2)的二重積分,通常利用極坐標(biāo)計(jì)算較方便.
使用極坐標(biāo)計(jì)算二重積分時(shí),要先將區(qū)域D的邊界曲線化為極坐標(biāo)下的方程表示,以確定出區(qū)域D的不等式表示式,再將積分化為二次積分.
本題考生中常見(jiàn)的錯(cuò)誤為:
被積函數(shù)中丟掉了r.這是將直角坐標(biāo)系下的二重積分化為極坐標(biāo)下的二次積分時(shí)常見(jiàn)的錯(cuò)誤,考生務(wù)必要注意.
62.
63.本題考查的知識(shí)點(diǎn)為選擇積分次序;計(jì)算二重積分.
由于不能利用初等函數(shù)表示出來(lái),因此應(yīng)該將二重積分化為先對(duì)x積分后對(duì)y積分的二此積分.
64.65.利用洛必達(dá)法則原式,接下去有兩種解法:解法1利用等價(jià)無(wú)窮小代換.
解法2利用洛必達(dá)法
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版小區(qū)商業(yè)街物業(yè)社區(qū)環(huán)境美化服務(wù)合同3篇
- 2025版挖掘機(jī)產(chǎn)品售后服務(wù)與技術(shù)升級(jí)合同范本3篇
- 二零二五年度農(nóng)產(chǎn)品展銷(xiāo)中心攤位租賃合同
- 2024項(xiàng)目代建協(xié)議合同
- 二零二五個(gè)人權(quán)利質(zhì)押貸款合同范本3篇
- 2025年度旅游行業(yè)納稅擔(dān)保服務(wù)協(xié)議
- 2025版二手房買(mǎi)賣(mài)合同風(fēng)險(xiǎn)評(píng)估協(xié)議3篇
- 2025年苗圃租賃合同及苗木種植與科研合作協(xié)議
- 二零二五寵物醫(yī)院獸醫(yī)職務(wù)聘任與培訓(xùn)合同4篇
- 二零二五年度出院患者出院前評(píng)估協(xié)議書(shū)范本4篇
- 寒潮雨雪應(yīng)急預(yù)案范文(2篇)
- 垃圾車(chē)駕駛員聘用合同
- 2024年大宗貿(mào)易合作共贏協(xié)議書(shū)模板
- 變壓器搬遷施工方案
- 單位轉(zhuǎn)賬個(gè)人合同模板
- 八年級(jí)語(yǔ)文下冊(cè) 成語(yǔ)故事 第十五課 諱疾忌醫(yī) 第六課時(shí) 口語(yǔ)交際教案 新教版(漢語(yǔ))
- 中考語(yǔ)文二輪復(fù)習(xí):記敘文閱讀物象的作用(含練習(xí)題及答案)
- 2024年1月高考適應(yīng)性測(cè)試“九省聯(lián)考”數(shù)學(xué) 試題(學(xué)生版+解析版)
- (正式版)JBT 11270-2024 立體倉(cāng)庫(kù)組合式鋼結(jié)構(gòu)貨架技術(shù)規(guī)范
- EPC項(xiàng)目采購(gòu)階段質(zhì)量保證措施
- T-NAHIEM 101-2023 急診科建設(shè)與設(shè)備配置標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論