版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.我國平均每平方千米的土地一年從太陽得到的能量,相當于燃燒130000000kg的煤所產生的能量.把130000000kg用科學記數(shù)法可表示為()A.13×kg B.0.13×kg C.1.3×kg D.1.3×kg2.如圖,由5個完全相同的小正方體組合成一個立體圖形,它的左視圖是()A. B. C. D.3.已知函數(shù),則使y=k成立的x值恰好有三個,則k的值為()A.0 B.1 C.2 D.34.若一元二次方程x2﹣2kx+k2=0的一根為x=﹣1,則k的值為()A.﹣1 B.0 C.1或﹣1 D.2或05.如圖,在中,,,,點分別在上,于,則的面積為()A. B. C. D.6.函數(shù)的自變量x的取值范圍是()A. B. C. D.7.如圖,DE是線段AB的中垂線,,,,則點A到BC的距離是A.4 B. C.5 D.68.如圖,AB是一垂直于水平面的建筑物,某同學從建筑物底端B出發(fā),先沿水平方向向右行走20米到達點C,再經過一段坡度(或坡比)為i=1:0.75、坡長為10米的斜坡CD到達點D,然后再沿水平方向向右行走40米到達點E(A,B,C,D,E均在同一平面內).在E處測得建筑物頂端A的仰角為24°,則建筑物AB的高度約為(參考數(shù)據(jù):sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米 B.22.4米 C.27.4米 D.28.8米9.地球平均半徑約等于6400000米,6400000用科學記數(shù)法表示為()A.64×105 B.6.4×105 C.6.4×106 D.6.4×10710.計算結果是()A.0 B.1 C.﹣1 D.x二、填空題(本大題共6個小題,每小題3分,共18分)11.已知A(0,3),B(2,3)是拋物線上兩點,該拋物線的頂點坐標是_________.12.如圖,矩形ABCD的對角線BD經過的坐標原點,矩形的邊分別平行于坐標軸,點C在反比例函數(shù)y=的圖象上,若點A的坐標為(﹣2,﹣3),則k的值為_____.13.將一次函數(shù)的圖象平移,使其經過點(2,3),則所得直線的函數(shù)解析式是______.14.中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一段記載:“三百七十八里關,初日健步不為難,次日腳痛減一半,六朝才得到其關.”其大意是:有人要去某關口,路程為378里,第一天健步行走,從第二天起,由于腳痛,每天走的路程都為前一天的一半,一共走了六天才到達目的地.求此人第六天走的路程為多少里.設此人第六天走的路程為x里,依題意,可列方程為________.15.若關于x的方程(k﹣1)x2﹣4x﹣5=0有實數(shù)根,則k的取值范圍是_____.16.如圖,在中,,,為邊的高,點在軸上,點在軸上,點在第一象限,若從原點出發(fā),沿軸向右以每秒1個單位長的速度運動,則點隨之沿軸下滑,并帶動在平面內滑動,設運動時間為秒,當?shù)竭_原點時停止運動連接,線段的長隨的變化而變化,當最大時,______.當?shù)倪吪c坐標軸平行時,______.三、解答題(共8題,共72分)17.(8分)我們知道中,如果,,那么當時,的面積最大為6;(1)若四邊形中,,且,直接寫出滿足什么位置關系時四邊形面積最大?并直接寫出最大面積.(2)已知四邊形中,,求為多少時,四邊形面積最大?并求出最大面積是多少?18.(8分)已知:如圖,梯形ABCD中,AD∥BC,DE∥AB,與對角線交于點,∥,且FG=EF.(1)求證:四邊形是菱形;(2)聯(lián)結AE,又知AC⊥ED,求證:.19.(8分)解方程組20.(8分)《孫子算經》是中國傳統(tǒng)數(shù)學的重要著作之一,其中記載的“蕩杯問題”很有趣.《孫子算經》記載“今有婦人河上蕩杯.津吏問曰:‘杯何以多?’婦人曰:‘家有客.’津吏曰:‘客幾何?’婦人曰:‘二人共飯,三人共羹,四人共肉,凡用杯六十五.’不知客幾何?”譯文:“2人同吃一碗飯,3人同吃一碗羹,4人同吃一碗肉,共用65個碗,問有多少客人?”21.(8分)鄂州某個體商戶購進某種電子產品的進價是50元/個,根據(jù)市場調研發(fā)現(xiàn)售價是80元/個時,每周可賣出160個,若銷售單價每個降低2元,則每周可多賣出20個.設銷售價格每個降低x元(x為偶數(shù)),每周銷售為y個.(1)直接寫出銷售量y個與降價x元之間的函數(shù)關系式;(2)設商戶每周獲得的利潤為W元,當銷售單價定為多少元時,每周銷售利潤最大,最大利潤是多少元?(3)若商戶計劃下周利潤不低于5200元的情況下,他至少要準備多少元進貨成本?22.(10分)已知△ABC內接于⊙O,AD平分∠BAC.(1)如圖1,求證:;(2)如圖2,當BC為直徑時,作BE⊥AD于點E,CF⊥AD于點F,求證:DE=AF;(3)如圖3,在(2)的條件下,延長BE交⊙O于點G,連接OE,若EF=2EG,AC=2,求OE的長.23.(12分)如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交AB于點D,DE交AC于點E,且∠A=∠ADE.(1)求證:DE是⊙O的切線;(2)若AD=16,DE=10,求BC的長.24.如圖,AB是⊙O的直徑,,連結AC,過點C作直線l∥AB,點P是直線l上的一個動點,直線PA與⊙O交于另一點D,連結CD,設直線PB與直線AC交于點E.求∠BAC的度數(shù);當點D在AB上方,且CD⊥BP時,求證:PC=AC;在點P的運動過程中①當點A在線段PB的中垂線上或點B在線段PA的中垂線上時,求出所有滿足條件的∠ACD的度數(shù);②設⊙O的半徑為6,點E到直線l的距離為3,連結BD,DE,直接寫出△BDE的面積.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題分析:科學計數(shù)法是指:a×,且,n為原數(shù)的整數(shù)位數(shù)減一.2、B【解析】試題分析:從左面看易得第一層有2個正方形,第二層最左邊有一個正方形.故選B.考點:簡單組合體的三視圖.3、D【解析】
解:如圖:利用頂點式及取值范圍,可畫出函數(shù)圖象會發(fā)現(xiàn):當x=3時,y=k成立的x值恰好有三個.故選:D.4、A【解析】
把x=﹣1代入方程計算即可求出k的值.【詳解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故選:A.【點睛】此題考查了一元二次方程的解,方程的解即為能使方程左右兩邊相等的未知數(shù)的值.5、C【解析】
先利用三角函數(shù)求出BE=4m,同(1)的方法判斷出∠1=∠3,進而得出△ACQ∽△CEP,得出比例式求出PE,最后用面積的差即可得出結論;【詳解】∵,
∴CQ=4m,BP=5m,
在Rt△ABC中,sinB=,tanB=,
如圖2,過點P作PE⊥BC于E,
在Rt△BPE中,PE=BP?sinB=5m×=3m,tanB=,
∴,
∴BE=4m,CE=BC-BE=8-4m,
同(1)的方法得,∠1=∠3,
∵∠ACQ=∠CEP,
∴△ACQ∽△CEP,
∴,∴,
∴m=,
∴PE=3m=,
∴S△ACP=S△ACB-S△PCB=BC×AC-BC×PE=BC(AC-PE)=×8×(6-)=,故選C.【點睛】本題是相似形綜合題,主要考查了相似三角形的判定和性質,三角形的面積的計算方法,判斷出△ACQ∽△CEP是解題的關鍵.6、D【解析】
根據(jù)二次根式的意義,被開方數(shù)是非負數(shù).【詳解】根據(jù)題意得,解得.故選D.【點睛】本題考查了函數(shù)自變量的取值范圍的確定和分式的意義.函數(shù)自變量的范圍一般從三個方面考慮:(1)當函數(shù)表達式是整式時,自變量可取全體實數(shù);(2)當函數(shù)表達式是分式時,考慮分式的分母不能為0;(3)當函數(shù)表達式是二次根式時,被開方數(shù)非負數(shù).7、A【解析】
作于利用直角三角形30度角的性質即可解決問題.【詳解】解:作于H.
垂直平分線段AB,
,
,
,
,
,
,
,,
,
故選A.【點睛】本題考查線段的垂直平分線的性質,等腰三角形的性質,解直角三角形等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,屬于中考??碱}型.8、A【解析】
作BM⊥ED交ED的延長線于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根據(jù)tan24°=,構建方程即可解決問題.【詳解】作BM⊥ED交ED的延長線于M,CN⊥DM于N.在Rt△CDN中,∵,設CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四邊形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=,∴0.45=,∴AB=21.7(米),故選A.【點睛】本題考查的是解直角三角形的應用-仰角俯角問題,根據(jù)題意作出輔助線,構造出直角三角形是解答此題的關鍵.9、C【解析】
由科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:6400000=6.4×106,故選C.點睛:此題考查了科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.10、C【解析】試題解析:.故選C.考點:分式的加減法.二、填空題(本大題共6個小題,每小題3分,共18分)11、(1,4).【解析】試題分析:把A(0,3),B(2,3)代入拋物線可得b=2,c=3,所以=,即可得該拋物線的頂點坐標是(1,4).考點:拋物線的頂點.12、1或﹣1【解析】
根據(jù)矩形的對角線將矩形分成面積相等的兩個直角三角形,找到圖中的所有矩形及相等的三角形,即可推出S四邊形CEOF=S四邊形HAGO,根據(jù)反比例函數(shù)比例系數(shù)的幾何意義即可求出k2+4k+1=6,再解出k的值即可.【詳解】如圖:∵四邊形ABCD、HBEO、OECF、GOFD為矩形,又∵BO為四邊形HBEO的對角線,OD為四邊形OGDF的對角線,∴S△BEO=S△BHO,S△OFD=S△OGD,S△CBD=S△ADB,∴S△CBD﹣S△BEO﹣S△OFD=S△ADB﹣S△BHO﹣S△OGD,∴S四邊形CEOF=S四邊形HAGO=2×3=6,∴xy=k2+4k+1=6,解得k=1或k=﹣1.故答案為1或﹣1.【點睛】本題考查了反比例函數(shù)k的幾何意義、矩形的性質、一元二次方程的解法,解題的關鍵是判斷出S四邊形CEOF=S四邊形HAGO.13、【解析】試題分析:解:設y=x+b,∴3=2+b,解得:b=1.∴函數(shù)解析式為:y=x+1.故答案為y=x+1.考點:一次函數(shù)點評:本題要注意利用一次函數(shù)的特點,求出未知數(shù)的值從而求得其解析式,求直線平移后的解析式時要注意平移時k的值不變.14、;【解析】
設第一天走了x里,則第二天走了里,第三天走了里…第六天走了里,根據(jù)總路程為378里列出方程可得答案.【詳解】解:設第一天走了x里,則第二天走了里,第三天走了里…第六天走了里,依題意得:,故答案:.【點睛】本題主要考查由實際問題抽象出一元一次方程.15、【解析】當k?1=0,即k=1時,原方程為?4x?5=0,解得:x=?,∴k=1符合題意;當k?1≠0,即k≠1時,有,解得:k?且k≠1.綜上可得:k的取值范圍為k?.故答案為k?.16、4【解析】
(1)由等腰三角形的性質可得AD=BD,從而可求出OD=4,然后根據(jù)當O,D,C共線時,OC取最大值求解即可;(2)根據(jù)等腰三角形的性質求出CD,分AC∥y軸、BC∥x軸兩種情況,根據(jù)相似三角形的判定定理和性質定理列式計算即可.【詳解】(1),,當O,D,C共線時,OC取最大值,此時OD⊥AB.∵,∴△AOB為等腰直角三角形,∴;(2)∵BC=AC,CD為AB邊的高,∴∠ADC=90°,BD=DA=AB=4,∴CD==3,當AC∥y軸時,∠ABO=∠CAB,∴Rt△ABO∽Rt△CAD,∴,即,解得,t=,當BC∥x軸時,∠BAO=∠CBD,∴Rt△ABO∽Rt△BCD,∴,即,解得,t=,
則當t=或時,△ABC的邊與坐標軸平行.
故答案為t=或.【點睛】本題考查的是直角三角形的性質,等腰三角形的性質,相似三角形的判定和性質,掌握相似三角形的判定定理和性質定理、靈活運用分情況討論思想是解題的關鍵.三、解答題(共8題,共72分)17、(1)當,時有最大值1;(2)當時,面積有最大值32.【解析】
(1)由題意當AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,由此即可解決問題.
(2)設BD=x,由題意:當AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,構建二次函數(shù),利用二次函數(shù)的性質即可解決問題.【詳解】(1)由題意當AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,
最大面積為×6×(16-6)=1.故當,時有最大值1;(2)當,時有最大值,設,由題意:當AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,∴拋物線開口向下∴當時,面積有最大值32.【點睛】本題考查三角形的面積,二次函數(shù)的應用等知識,解題的關鍵是學會利用參數(shù)構建二次函數(shù)解決問題.18、(1)見解析;(2)見解析【解析】分析:(1)由兩組對邊分別平行的四邊形是平行四邊形,得到是平行四邊形.再由平行線分線段成比例定理得到:,,=,即可得到結論;(2)連接,與交于點.由菱形的性質得到⊥,進而得到,,即有,得到△∽△,由相似三角形的性質即可得到結論.詳解:(1)∵∥∥,∴四邊形是平行四邊形.∵∥,∴.同理.得:=∵,∴.∴四邊形是菱形.(2)連接,與交于點.∵四邊形是菱形,∴⊥.得.同理.∴.又∵是公共角,∴△∽△.∴.∴.點睛:本題主要考查了菱形的判定和性質以及相似三角形的判定與性質.靈活運用菱形的判定與性質是解題的關鍵.19、【解析】
將②×3,再聯(lián)立①②消未知數(shù)即可計算.【詳解】解:②得:③①+③得:把代入③得∴方程組的解為【點睛】本題考查二元一次方程組解法,關鍵是掌握消元法.20、x=60【解析】
設有x個客人,根據(jù)題意列出方程,解出方程即可得到答案.【詳解】解:設有x個客人,則解得:x=60;∴有60個客人.【點睛】本題考查了由實際問題抽象出一元一次方程,找準等量關系,正確列出一元一次方程是解題的關鍵.21、(1)y=10x+160;(2)5280元;(3)10000元.【解析】試題分析:(1)根據(jù)題意,由售價是80元/個時,每周可賣出160個,若銷售單價每個降低2元,則每周可多賣出20個,可得銷售量y個與降價x元之間的函數(shù)關系式;(2)根據(jù)題意結合每周獲得的利潤W=銷量×每個的利潤,進而利用二次函數(shù)增減性求出答案;(3)根據(jù)題意,由利潤不低于5200元列出不等式,進一步得到銷售量的取值范圍,從而求出答案.試題解析:(1)依題意有:y=10x+160;(2)依題意有:W=(80﹣50﹣x)(10x+160)=﹣10(x﹣7)2+5290,∵-10<0且x為偶數(shù),故當x=6或x=8時,即故當銷售單價定為74或72元時,每周銷售利潤最大,最大利潤是5280元;(3)依題意有:﹣10(x﹣7)2+5290≥5200,解得4≤x≤10,則200≤y≤260,200×50=10000(元).答:他至少要準備10000元進貨成本.點睛:此題主要考查了二次函數(shù)的應用以及一元二次方程的應用等知識,正確利用銷量×每個的利潤=W得出函數(shù)關系式是解題關鍵.22、(1)證明見解析;(1)證明見解析;(3)1.【解析】
(1)連接OB、OC、OD,根據(jù)圓心角與圓周角的性質得∠BOD=1∠BAD,∠COD=1∠CAD,又AD平分∠BAC,得∠BOD=∠COD,再根據(jù)圓周角相等所對的弧相等得出結論.(1)過點O作OM⊥AD于點M,又一組角相等,再根據(jù)平行線的性質得出對應邊成比例,進而得出結論;(3)延長EO交AB于點H,連接CG,連接OA,BC為⊙O直徑,則∠G=∠CFE=∠FEG=90°,四邊形CFEG是矩形,得EG=CF,又AD平分∠BAC,再根據(jù)鄰補角與余角的性質可得∠BAF=∠ABE,∠ACF=∠CAF,AE=BE,AF=CF,再根據(jù)直角三角形的三角函數(shù)計算出邊的長,根據(jù)“角角邊”證明出△HBO∽△ABC,根據(jù)相似三角形的性質得出對應邊成比例,進而得出結論.【詳解】(1)如圖1,連接OB、OC、OD,∵∠BAD和∠BOD是所對的圓周角和圓心角,∠CAD和∠COD是所對的圓周角和圓心角,∴∠BOD=1∠BAD,∠COD=1∠CAD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴=;(1)如圖1,過點O作OM⊥AD于點M,∴∠OMA=90°,AM=DM,∵BE⊥AD于點E,CF⊥AD于點F,∴∠CFM=90°,∠MEB=90°,∴∠OMA=∠MEB,∠CFM=∠OMA,∴OM∥BE,OM∥CF,∴BE∥OM∥CF,∴,∵OB=OC,∴=1,∴FM=EM,∴AM﹣FM=DM﹣EM,∴DE=AF;(3)延長EO交AB于點H,連接CG,連接OA.∵BC為⊙O直徑,∴∠BAC=90°,∠G=90°,∴∠G=∠CFE=∠FEG=90°,∴四邊形CFEG是矩形,∴EG=CF,∵AD平分∠BAC,∴∠BAF=∠CAF=×90°=45°,∴∠ABE=180°﹣∠BAF﹣∠AEB=45°,∠ACF=180°﹣∠CAF﹣∠AFC=45°,∴∠BAF=∠ABE,∠ACF=∠CAF,∴AE=BE,AF=CF,在Rt△ACF中,∠AFC=90°,∴sin∠CAF=,即sin45°=,∴CF=1×=,∴EG=,∴EF=1EG=1,∴AE=3,在Rt△AEB中,∠AEB=90°,∴AB==6,∵AE=BE,OA=OB,∴EH垂直平分AB,∴BH=EH=3,∵∠OHB=∠BAC,∠ABC=∠ABC∴△HBO∽△ABC,∴,∴OH=1,∴OE=EH﹣OH=3﹣1=1.【點睛】本題考查了相似三角形的判定與性質和圓的相關知識點,解題的關鍵是熟練的掌握相似三角形的判定與性質和圓的相關知識點.23、(1)證明見解析;(2)15.【解析】
(1)先連接OD,根據(jù)圓周角定理求出∠ADB=90°,根據(jù)直角三角形斜邊上中線性質求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根據(jù)切線的判定推出即可.
(2)首先證明AC=2DE=20,在Rt△ADC中,DC=12,設BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解決問題.【詳解】(1)證明:連結OD,∵∠ACB=90°,∴∠A+∠B=90°,又∵OD=OB,∴∠B=∠BDO,∵∠ADE=∠A,∴∠ADE+∠BDO=90°,∴∠ODE=90°.∴DE是⊙O的切線;(2)連結CD,∵∠ADE=∠A,∴AE=DE.∵BC是⊙O的直徑,∠ACB=90°.∴EC是⊙O的切線.∴DE=EC.∴AE=EC,又∵DE=10,∴AC=2DE=20,在Rt△ADC中,DC=設BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年物業(yè)買賣擔保合同
- 高職班主任工作計劃范文
- 七年級教學計劃三篇
- 心理健康工作計劃
- 師德規(guī)范學習心得體會
- 游藝機項目可行性研究報告
- 初中數(shù)學教師年度考核總結
- 幼兒園大班班會活動教案
- 公司經理述職報告三篇
- 小升初自我鑒定合集12篇
- 森林草原防火工作培訓課件
- 2023年婦科門診總結及計劃
- 方大重整海航方案
- 河北省秦皇島市昌黎縣2023-2024學年八年級上學期期末數(shù)學試題
- 礦山治理專項研究報告范文
- 國家開放大學2023年7月期末統(tǒng)一試《11124流行病學》試題及答案-開放本科
- 貨運安全生產管理制度
- 幼兒園中班體育《我們愛運動》+課件
- 郭錫良《古代漢語》課件
- 外研版四年級英語下冊(一年級起點)全冊完整課件
- 防止電力生產事故的-二十五項重點要求(2023版)
評論
0/150
提交評論