韶關市重點中學2022-2023學年中考數(shù)學猜題卷含解析_第1頁
韶關市重點中學2022-2023學年中考數(shù)學猜題卷含解析_第2頁
韶關市重點中學2022-2023學年中考數(shù)學猜題卷含解析_第3頁
韶關市重點中學2022-2023學年中考數(shù)學猜題卷含解析_第4頁
韶關市重點中學2022-2023學年中考數(shù)學猜題卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.計算的值()A.1 B. C.3 D.2.一次函數(shù)y=ax+b與反比例函數(shù),其中ab<0,a、b為常數(shù),它們在同一坐標系中的圖象可以是()A. B. C. D.3.在以下四個圖案中,是軸對稱圖形的是()A. B. C. D.4.如圖是由四個小正方體疊成的一個幾何體,它的左視圖是()A. B. C. D.5.剪紙是我國傳統(tǒng)的民間藝術.下列剪紙作品既不是中心對稱圖形,也不是軸對稱圖形的是()A. B. C. D.6.某車間20名工人日加工零件數(shù)如表所示:日加工零件數(shù)45678人數(shù)26543這些工人日加工零件數(shù)的眾數(shù)、中位數(shù)、平均數(shù)分別是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、67.如圖,在等邊三角形ABC中,點P是BC邊上一動點(不與點B、C重合),連接AP,作射線PD,使∠APD=60°,PD交AC于點D,已知AB=a,設CD=y,BP=x,則y與x函數(shù)關系的大致圖象是()A. B. C. D.8.下列事件中為必然事件的是()A.打開電視機,正在播放茂名新聞 B.早晨的太陽從東方升起C.隨機擲一枚硬幣,落地后正面朝上 D.下雨后,天空出現(xiàn)彩虹9.某學校組織藝術攝影展,上交的作品要求如下:七寸照片(長7英寸,寬5英寸);將照片貼在一張矩形襯紙的正中央,照片四周外露襯紙的寬度相同;矩形襯紙的面積為照片面積的3倍.設照片四周外露襯紙的寬度為x英寸(如圖),下面所列方程正確的是()A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×510.如圖,空心圓柱體的左視圖是()A. B. C. D.11.將直徑為60cm的圓形鐵皮,做成三個相同的圓錐容器的側面(不浪費材料,不計接縫處的材料損耗),那么每個圓錐容器的底面半徑為()A.10cm B.30cm C.45cm D.300cm12.在同一直角坐標系中,函數(shù)y=kx-k與(k≠0)的圖象大致是()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.關于x的一元二次方程x2+4x﹣k=0有實數(shù)根,則k的取值范圍是__________.14.如圖所示,一動點從半徑為2的⊙O上的A0點出發(fā),沿著射線A0O方向運動到⊙O上的點A1處,再向左沿著與射線A1O夾角為60°的方向運動到⊙O上的點A2處;接著又從A2點出發(fā),沿著射線A2O方向運動到⊙O上的點A3處,再向左沿著與射線A3O夾角為60°的方向運動到⊙O上的點A4處;A4A0間的距離是_____;…按此規(guī)律運動到點A2019處,則點A2019與點A0間的距離是_____.15.若關于x的一元二次方程x2﹣2x+m=0有實數(shù)根,則m的取值范圍是.16.已知:如圖,AB是⊙O的直徑,弦EF⊥AB于點D,如果EF=8,AD=2,則⊙O半徑的長是_____.17.如圖,直線y=x,點A1坐標為(1,0),過點A1作x軸的垂線交直線于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸于點A2,再過點A2作x軸的垂線交直線于點B2,以原點O為圓心,OB2長為半徑畫弧交x軸于點A3,……按此作法進行去,點Bn的縱坐標為(n為正整數(shù)).18.若一次函數(shù)y=﹣x+b(b為常數(shù))的圖象經過點(1,2),則b的值為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,點D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.判斷直線CD和⊙O的位置關系,并說明理由.過點B作⊙O的切線BE交直線CD于點E,若AC=2,⊙O的半徑是3,求BE的長.20.(6分)如圖,在Rt△ABC中,∠ACB=90°,AC=2cm,AB=4cm,動點P從點C出發(fā),在BC邊上以每秒cm的速度向點B勻速運動,同時動點Q也從點C出發(fā),沿C→A→B以每秒4cm的速度勻速運動,運動時間為t秒,連接PQ,以PQ為直徑作⊙O.(1)當時,求△PCQ的面積;(2)設⊙O的面積為s,求s與t的函數(shù)關系式;(3)當點Q在AB上運動時,⊙O與Rt△ABC的一邊相切,求t的值.21.(6分)“食品安全”受到全社會的廣泛關注,我區(qū)兼善中學對部分學生就食品安全知識的了解程度,采用隨機抽樣調查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面的兩幅尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:(1)接受問卷調查的學生共有人,扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為°;(2)請補全條形統(tǒng)計圖;(3)若對食品安全知識達到“了解”程度的學生中,男、女生的比例恰為2:3,現(xiàn)從中隨機抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.22.(8分)如圖,某同學在測量建筑物AB的高度時,在地面的C處測得點A的仰角為30°,向前走60米到達D處,在D處測得點A的仰角為45°,求建筑物AB的高度.23.(8分)凱里市某文具店某種型號的計算器每只進價12元,售價20元,多買優(yōu)惠,優(yōu)勢方法是:凡是一次買10只以上的,每多買一只,所買的全部計算器每只就降價0.1元,例如:某人買18只計算器,于是每只降價0.1×(18﹣10)=0.8(元),因此所買的18只計算器都按每只19.2元的價格購買,但是每只計算器的最低售價為16元.求一次至少購買多少只計算器,才能以最低價購買?求寫出該文具店一次銷售x(x>10)只時,所獲利潤y(元)與x(只)之間的函數(shù)關系式,并寫出自變量x的取值范圍;一天,甲顧客購買了46只,乙顧客購買了50只,店主發(fā)現(xiàn)賣46只賺的錢反而比賣50只賺的錢多,請你說明發(fā)生這一現(xiàn)象的原因;當10<x≤50時,為了獲得最大利潤,店家一次應賣多少只?這時的售價是多少?24.(10分)如圖,矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線經過A、C兩點,與AB邊交于點D.(1)求拋物線的函數(shù)表達式;(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設CP=m,△CPQ的面積為S.①求S關于m的函數(shù)表達式,并求出m為何值時,S取得最大值;②當S最大時,在拋物線的對稱軸l上若存在點F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標;若不存在,請說明理由.25.(10分)如圖,已知△ABC內接于,AB是直徑,OD∥AC,AD=OC.(1)求證:四邊形OCAD是平行四邊形;(2)填空:①當∠B=時,四邊形OCAD是菱形;②當∠B=時,AD與相切.26.(12分)閱讀下面材料,并解答問題.材料:將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式.解:由分母為﹣x2+1,可設﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b則﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵對應任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+這樣,分式被拆分成了一個整式x2+2與一個分式的和.解答:將分式拆分成一個整式與一個分式(分子為整數(shù))的和的形式.試說明的最小值為1.27.(12分)在數(shù)學實踐活動課上,老師帶領同學們到附近的濕地公園測量園內雕塑的高度.用測角儀在A處測得雕塑頂端點C′的仰角為30°,再往雕塑方向前進4米至B處,測得仰角為45°.問:該雕塑有多高?(測角儀高度忽略不計,結果不取近似值.)

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】

根據(jù)有理數(shù)的加法法則進行計算即可.【詳解】故選:A.【點睛】本題主要考查有理數(shù)的加法,掌握有理數(shù)的加法法則是解題的關鍵.2、C【解析】

根據(jù)一次函數(shù)的位置確定a、b的大小,看是否符合ab<0,計算a-b確定符號,確定雙曲線的位置.【詳解】A.由一次函數(shù)圖象過一、三象限,得a>0,交y軸負半軸,則b<0,滿足ab<0,∴a?b>0,∴反比例函數(shù)y=的圖象過一、三象限,所以此選項不正確;B.由一次函數(shù)圖象過二、四象限,得a<0,交y軸正半軸,則b>0,滿足ab<0,∴a?b<0,∴反比例函數(shù)y=的圖象過二、四象限,所以此選項不正確;C.由一次函數(shù)圖象過一、三象限,得a>0,交y軸負半軸,則b<0,滿足ab<0,∴a?b>0,∴反比例函數(shù)y=的圖象過一、三象限,所以此選項正確;D.由一次函數(shù)圖象過二、四象限,得a<0,交y軸負半軸,則b<0,滿足ab>0,與已知相矛盾所以此選項不正確;故選C.【點睛】此題考查反比例函數(shù)的圖象,一次函數(shù)的圖象,解題關鍵在于確定a、b的大小3、A【解析】

根據(jù)軸對稱圖形的概念對各選項分析判斷利用排除法求解.【詳解】A、是軸對稱圖形,故本選項正確;

B、不是軸對稱圖形,故本選項錯誤;

C、不是軸對稱圖形,故本選項錯誤;

D、不是軸對稱圖形,故本選項錯誤.

故選:A.【點睛】本題考查了軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.4、A【解析】試題分析:如圖是由四個小正方體疊成的一個幾何體,它的左視圖是.故選A.考點:簡單組合體的三視圖.5、A【解析】試題分析:根據(jù)軸對稱圖形和中心對稱圖形的概念可知:選項A既不是中心對稱圖形,也不是軸對稱圖形,故本選項正確;選項B不是中心對稱圖形,是軸對稱圖形,故本選項錯誤;選項C既是中心對稱圖形,也是軸對稱圖形,故本選項錯誤;選項D既是中心對稱圖形,也是軸對稱圖形,故本選項錯誤.故選A.考點:中心對稱圖形;軸對稱圖形.6、D【解析】

5出現(xiàn)了6次,出現(xiàn)的次數(shù)最多,則眾數(shù)是5;把這些數(shù)從小到大排列,中位數(shù)是第10,11個數(shù)的平均數(shù),則中位數(shù)是(6+6)÷2=6;平均數(shù)是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故答案選D.7、C【解析】

根據(jù)等邊三角形的性質可得出∠B=∠C=60°,由等角的補角相等可得出∠BAP=∠CPD,進而即可證出△ABP∽△PCD,根據(jù)相似三角形的性質即可得出y=-x2+x,對照四個選項即可得出.【詳解】∵△ABC為等邊三角形,

∴∠B=∠C=60°,BC=AB=a,PC=a-x.

∵∠APD=60°,∠B=60°,

∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,

∴∠BAP=∠CPD,

∴△ABP∽△PCD,∴,即,∴y=-x2+x.故選C.【點睛】考查了動點問題的函數(shù)圖象、相似三角形的判定與性質,利用相似三角形的性質找出y=-x2+x是解題的關鍵.8、B【解析】分析:根據(jù)必然事件、不可能事件、隨機事件的概念可區(qū)別各類事件:A、打開電視機,正在播放茂名新聞,可能發(fā)生,也可能不發(fā)生,是隨機事件,故本選項錯誤;B、早晨的太陽從東方升起,是必然事件,故本選項正確;C、隨機擲一枚硬幣,落地后可能正面朝上,也可能背面朝上,故本選項錯誤;D、下雨后,天空出現(xiàn)彩虹,可能發(fā)生,也可能不發(fā)生,故本選項錯誤.故選B.9、D【解析】試題分析:由題意得;如圖知;矩形的長="7+2x"寬=5+2x∴矩形襯底的面積=3倍的照片的面積,可得方程為(7+2X)(5+2X)=3×7×5考點:列方程點評:找到題中的等量關系,根據(jù)兩個矩形的面積3倍的關系得到方程,注意的是矩形的間距都為等量的,從而得到大矩形的長于寬,用未知數(shù)x的代數(shù)式表示,而列出方程,屬于基礎題.10、C【解析】

根據(jù)從左邊看得到的圖形是左視圖,可得答案.【詳解】從左邊看是三個矩形,中間矩形的左右兩邊是虛線,故選C.【點睛】本題考查了簡單幾何體的三視圖,從左邊看得到的圖形是左視圖.11、A【解析】

根據(jù)已知得出直徑是的圓形鐵皮,被分成三個圓心角為半徑是30cm的扇形,再根據(jù)扇形弧長等于圓錐底面圓的周長即可得出答案?!驹斀狻恐睆绞堑膱A形鐵皮,被分成三個圓心角為半徑是30cm的扇形假設每個圓錐容器的地面半徑為解得故答案選A.【點睛】本題考查扇形弧長的計算方法和扇形圍成的圓錐底面圓的半徑的計算方法。12、D【解析】

根據(jù)k值的正負性分別判斷一次函數(shù)y=kx-k與反比例函數(shù)(k≠0)所經過象限,即可得出答案.【詳解】解:有兩種情況,當k>0是時,一次函數(shù)y=kx-k的圖象經過一、三、四象限,反比例函數(shù)(k≠0)的圖象經過一、三象限;當k<0時,一次函數(shù)y=kx-k的圖象經過一、二、四象限,反比例函數(shù)(k≠0)的圖象經過二、四象限;根據(jù)選項可知,D選項滿足條件.故選D.【點睛】本題考查了一次函數(shù)、反比例函數(shù)的圖象.正確這兩種圖象所經過的象限是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、k≥﹣1【解析】分析:根據(jù)方程的系數(shù)結合根的判別式△≥0,即可得出關于k的一元一次不等式,解之即可得出結論.詳解:∵關于x的一元二次方程x2+1x-k=0有實數(shù)根,∴△=12-1×1×(-k)=16+1k≥0,解得:k≥-1.故答案為k≥-1.點睛:本題考查了根的判別式,牢記“當△≥0時,方程有實數(shù)根”是解題的關鍵.14、1.【解析】

據(jù)題意求得A0A1=4,A0A1=,A0A3=1,A0A4=,A0A5=1,A0A6=0,A0A7=4,…于是得到A1019與A3重合,即可得到結論.【詳解】解:如圖,∵⊙O的半徑=1,由題意得,A0A1=4,A0A1=,A0A3=1,A0A4=,A0A5=1,A0A6=0,A0A7=4,…∵1019÷6=336…3,∴按此規(guī)律A1019與A3重合,∴A0A1019=A0A3=1,故答案為,1.【點睛】本題考查了圖形的變化類,等邊三角形的性質,解直角三角形,正確的作出圖形是解題的關鍵.15、m≤1.【解析】試題分析:由題意知,△=4﹣4m≥0,∴m≤1.故答案為m≤1.考點:根的判別式.16、1.【解析】試題解析:連接OE,如下圖所示,則:OE=OA=R,∵AB是⊙O的直徑,弦EF⊥AB,∴ED=DF=4,∵OD=OA-AD,∴OD=R-2,在Rt△ODE中,由勾股定理可得:OE2=OD2+ED2,∴R2=(R-2)2+42,∴R=1.考點:1.垂徑定理;2.解直角三角形.17、.【解析】尋找規(guī)律:由直線y=x的性質可知,∵B2,B3,…,Bn是直線y=x上的點,∴△OA1B1,△OA2B2,…△OAnBn都是等腰直角三角形,且A2B2=OA2=OB1=OA1;A3B3=OA3=OB2=OA2=OA1;A4B4=OA4=OB3=OA3=OA1;…….又∵點A1坐標為(1,0),∴OA1=1.∴,即點Bn的縱坐標為.18、3【解析】

把點(1,2)代入解析式解答即可.【詳解】解:把點(1,2)代入解析式y(tǒng)=-x+b,可得:2=-1+b,解得:b=3,故答案為3【點睛】本題考查的是一次函數(shù)的圖象點的關系,關鍵是把點(1,2)代入解析式解答.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、解:(1)直線CD和⊙O的位置關系是相切,理由見解析(2)BE=1.【解析】試題分析:(1)連接OD,可知由直徑所對的圓周角是直角可得∠DAB+∠DBA=90°,再由∠CDA=∠CBD可得∠CDA+∠ADO=90°,從而得∠CDO=90°,根據(jù)切線的判定即可得出;(2)由已知利用勾股定理可求得DC的長,根據(jù)切線長定理有DE=EB,根據(jù)勾股定理得出方程,求出方程的解即可.試題解析:(1)直線CD和⊙O的位置關系是相切,理由是:連接OD,∵AB是⊙O的直徑,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDA=∠CBD,∴∠DAB+∠CDA=90°,∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90°,即OD⊥CE,∴直線CD是⊙O的切線,即直線CD和⊙O的位置關系是相切;(2)∵AC=2,⊙O的半徑是3,∴OC=2+3=5,OD=3,在Rt△CDO中,由勾股定理得:CD=4,∵CE切⊙O于D,EB切⊙O于B,∴DE=EB,∠CBE=90°,設DE=EB=x,在Rt△CBE中,由勾股定理得:CE2=BE2+BC2,則(4+x)2=x2+(5+3)2,解得:x=1,即BE=1.考點:1、切線的判定與性質;2、切線長定理;3、勾股定理;4、圓周角定理20、(1);(2)①;②;(3)t的值為或1或.【解析】

(1)先根據(jù)t的值計算CQ和CP的長,由圖形可知△PCQ是直角三角形,根據(jù)三角形面積公式可得結論;(2)分兩種情況:①當Q在邊AC上運動時,②當Q在邊AB上運動時;分別根據(jù)勾股定理計算PQ2,最后利用圓的面積公式可得S與t的關系式;(3)分別當⊙O與BC相切時、當⊙O與AB相切時,當⊙O與AC相切時三種情況分類討論即可確定答案.【詳解】(1)當t=時,CQ=4t=4×=2,即此時Q與A重合,CP=t=,∵∠ACB=90°,∴S△PCQ=CQ?PC=×2×=;(2)分兩種情況:①當Q在邊AC上運動時,0<t≤2,如圖1,由題意得:CQ=4t,CP=t,由勾股定理得:PQ2=CQ2+PC2=(4t)2+(t)2=19t2,∴S=π=;②當Q在邊AB上運動時,2<t<4如圖2,設⊙O與AB的另一個交點為D,連接PD,∵CP=t,AC+AQ=4t,∴PB=BC﹣PC=2﹣t,BQ=2+4﹣4t=6﹣4t,∵PQ為⊙O的直徑,∴∠PDQ=90°,Rt△ACB中,AC=2cm,AB=4cm,∴∠B=30°,Rt△PDB中,PD=PB=,∴BD=,∴QD=BQ﹣BD=6﹣4t﹣=3﹣,∴PQ==,∴S=π==;(3)分三種情況:①當⊙O與AC相切時,如圖3,設切點為E,連接OE,過Q作QF⊥AC于F,∴OE⊥AC,∵AQ=4t﹣2,Rt△AFQ中,∠AQF=30°,∴AF=2t﹣1,∴FQ=(2t﹣1),∵FQ∥OE∥PC,OQ=OP,∴EF=CE,∴FQ+PC=2OE=PQ,∴(2t﹣1)+t=,解得:t=或﹣(舍);②當⊙O與BC相切時,如圖4,此時PQ⊥BC,∵BQ=6﹣4t,PB=2﹣t,∴cos30°=,∴,∴t=1;③當⊙O與BA相切時,如圖5,此時PQ⊥BA,∵BQ=6﹣4t,PB=2﹣t,∴cos30°=,∴,∴t=,綜上所述,t的值為或1或.【點睛】本題是圓的綜合題,涉及了三角函數(shù)、勾股定理、圓的面積、切線的性質等知識,綜合性較強,有一定的難度,以點P和Q運動為主線,畫出對應的圖形是關鍵,注意數(shù)形結合的思想.21、(1)60,1°.(2)補圖見解析;(3)【解析】

(1)根據(jù)了解很少的人數(shù)和所占的百分百求出抽查的總人數(shù),再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對應扇形的圓心角的度數(shù);(2)用調查的總人數(shù)減去“基本了解”“了解很少”和“基本了解”的人數(shù),求出了解的人數(shù),從而補全統(tǒng)計圖;(3)根據(jù)題意先畫出樹狀圖,再根據(jù)概率公式即可得出答案.【詳解】(1)接受問卷調查的學生共有30÷50%=60(人),扇形統(tǒng)計圖中“基本了解”部分所對應扇形的圓心角為360°×=1°,故答案為60,1.(2)了解的人數(shù)有:60﹣15﹣30﹣10=5(人),補圖如下:(3)畫樹狀圖得:?∵共有20種等可能的結果,恰好抽到1個男生和1個女生的有12種情況,∴恰好抽到1個男生和1個女生的概率為=.【點睛】此題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖以及用列表法或樹狀圖法求概率,讀懂題意,根據(jù)題意求出總人數(shù)是解題的關鍵;概率=所求情況數(shù)與總情況數(shù)之比.22、(30+30)米.【解析】

解:設建筑物AB的高度為x米在Rt△ABD中,∠ADB=45°∴AB=DB=x∴BC=DB+CD=x+60在Rt△ABC中,∠ACB=30°,∴tan∠ACB=∴∴∴x=30+30∴建筑物AB的高度為(30+30)米23、(1)1;(3);(3)理由見解析,店家一次應賣45只,最低售價為16.5元,此時利潤最大.【解析】試題分析:(1)設一次購買x只,由于凡是一次買10只以上的,每多買一只,所買的全部計算器每只就降低0.10元,而最低價為每只16元,因此得到30﹣0.1(x﹣10)=16,解方程即可求解;(3)由于根據(jù)(1)得到x≤1,又一次銷售x(x>10)只,因此得到自變量x的取值范圍,然后根據(jù)已知條件可以得到y(tǒng)與x的函數(shù)關系式;(3)首先把函數(shù)變?yōu)閥=-0.1x2+9x試題解析:(1)設一次購買x只,則30﹣0.1(x﹣10)=16,解得:x=1.答:一次至少買1只,才能以最低價購買;(3)當10<x≤1時,y=[30﹣0.1(x﹣10)﹣13]x=-0.1x綜上所述:;(3)y=-0.1x2+9x②當45<x≤1時,y隨x的增大而減小,即當賣的只數(shù)越多時,利潤變?。耶攛=46時,y1=303.4,當x=1時,y3=3.∴y1>y3.即出現(xiàn)了賣46只賺的錢比賣1只賺的錢多的現(xiàn)象.當x=45時,最低售價為30﹣0.1(45﹣10)=16.5(元),此時利潤最大.故店家一次應賣45只,最低售價為16.5元,此時利潤最大.考點:二次函數(shù)的應用;二次函數(shù)的最值;最值問題;分段函數(shù);分類討論.24、(1);(2)①,當m=5時,S取最大值;②滿足條件的點F共有四個,坐標分別為,,,,【解析】

(1)將A、C兩點坐標代入拋物線y=-x2+bx+c,即可求得拋物線的解析式;

(2)①先用m表示出QE的長度,進而求出三角形的面積S關于m的函數(shù);

②直接寫出滿足條件的F點的坐標即可,注意不要漏寫.【詳解】解:(1)將A、C兩點坐標代入拋物線,得,解得:,∴拋物線的解析式為y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,過點Q作QE⊥BC與E點,則sin∠ACB===,∴=,∴QE=(10﹣m),∴S=?CP?QE=m×(10﹣m)=﹣m2+3m;②∵S=?CP?QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴當m=5時,S取最大值;在拋物線對稱軸l上存在點F,使△FDQ為直角三角形,∵拋物線的解析式為y=﹣x2+x+8的對稱軸為x=,D的坐標為(3,8),Q(3,4),當∠FDQ=90°時,F(xiàn)1(,8),當∠FQD=90°時,則F2(,4),當∠DFQ=90°時,設F(,n),則FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論