江蘇省南京玄武外國語學校2022-2023學年中考數(shù)學全真模擬試卷含解析_第1頁
江蘇省南京玄武外國語學校2022-2023學年中考數(shù)學全真模擬試卷含解析_第2頁
江蘇省南京玄武外國語學校2022-2023學年中考數(shù)學全真模擬試卷含解析_第3頁
江蘇省南京玄武外國語學校2022-2023學年中考數(shù)學全真模擬試卷含解析_第4頁
江蘇省南京玄武外國語學校2022-2023學年中考數(shù)學全真模擬試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年中考數(shù)學模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列命題正確的是()A.對角線相等的四邊形是平行四邊形B.對角線相等的四邊形是矩形C.對角線互相垂直的平行四邊形是菱形D.對角線互相垂直且相等的四邊形是正方形2.將一圓形紙片對折后再對折,得到下圖,然后沿著圖中的虛線剪開,得到兩部分,其中一部分展開后的平面圖形是()A. B. C. D.3.關于的分式方程解為,則常數(shù)的值為()A. B. C. D.4.如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點C,與x軸交于點A、點B(﹣1,0),則①二次函數(shù)的最大值為a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④當y>0時,﹣1<x<3,其中正確的個數(shù)是()A.1 B.2 C.3 D.45.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=40°,則∠2的度數(shù)為()A.50° B.40° C.30° D.25°6.下列運算正確的是()A.x?x4=x5 B.x6÷x3=x2 C.3x2﹣x2=3 D.(2x2)3=6x67.菱形的兩條對角線長分別是6cm和8cm,則它的面積是()A.6cm2 B.12cm2 C.24cm2 D.48cm28.如圖,折疊矩形紙片ABCD的一邊AD,使點D落在BC邊上的點F處,若AB=8,BC=10,則△CEF的周長為()A.12 B.16 C.18 D.249.如圖,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,點F是AC的中點,AD與FE,CE分別交于點G、H,∠BCE=∠CAD,有下列結論:①圖中存在兩個等腰直角三角形;②△AHE≌△CBE;③BC?AD=AE2;④S△ABC=4S△ADF.其中正確的個數(shù)有()A.1 B.2 C.3 D.410.如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,AB=c,∠A=α,則CD長為()A.c?sin2α B.c?cos2α C.c?sinα?tanα D.c?sinα?cosα11.正比例函數(shù)y=(k+1)x,若y隨x增大而減小,則k的取值范圍是()A.k>1 B.k<1 C.k>﹣1 D.k<﹣112.如圖,在正方形ABCD中,AB=9,點E在CD邊上,且DE=2CE,點P是對角線AC上的一個動點,則PE+PD的最小值是()A. B. C.9 D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,四邊形OABC是矩形,ADEF是正方形,點A、D在x軸的正半軸上,點C在y軸的正半軸上,點F在AB上,點B、E在反比例函數(shù)的圖像上,OA=1,OC=6,則正方形ADEF的邊長為.14.計算:2﹣1+=_____.15.隨意的拋一粒豆子,恰好落在圖中的方格中(每個方格除顏色外完全相同),那么這粒豆子落在黑色方格中的可能性是_____.16.25位同學10秒鐘跳繩的成績匯總如下表:人數(shù)1234510次么跳繩次數(shù)的中位數(shù)是_____________.17.分解因式:x2﹣4=_____.18.在平面直角坐標系xOy中,位于第一象限內的點A(1,2)在x軸上的正投影為點A′,則cos∠AOA′=__.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某市飛翔航模小隊,計劃購進一批無人機.已知3臺A型無人機和4臺B型無人機共需6400元,4臺A型無人機和3臺B型無人機共需6200元.(1)求一臺A型無人機和一臺B型無人機的售價各是多少元?(2)該航模小隊一次購進兩種型號的無人機共50臺,并且B型無人機的數(shù)量不少于A型無人機的數(shù)量的2倍.設購進A型無人機x臺,總費用為y元.①求y與x的關系式;②購進A型、B型無人機各多少臺,才能使總費用最少?20.(6分)如圖,可以自由轉動的轉盤被它的兩條直徑分成了四個分別標有數(shù)字的扇形區(qū)域,其中標有數(shù)字“1”的扇形圓心角為120°.轉動轉盤,待轉盤自動停止后,指針指向一個扇形的內部,則該扇形內的數(shù)字即為轉出的數(shù)字,此時,稱為轉動轉盤一次(若指針指向兩個扇形的交線,則不計轉動的次數(shù),重新轉動轉盤,直到指針指向一個扇形的內部為止)轉動轉盤一次,求轉出的數(shù)字是-2的概率;轉動轉盤兩次,用樹狀圖或列表法求這兩次分別轉出的數(shù)字之積為正數(shù)的概率.21.(6分)如圖所示,在坡角為30°的山坡上有一豎立的旗桿AB,其正前方矗立一墻,當陽光與水平線成45°角時,測得旗桿AB落在坡上的影子BD的長為8米,落在墻上的影子CD的長為6米,求旗桿AB的高(結果保留根號).22.(8分)如圖,已知矩形ABCD中,連接AC,請利用尺規(guī)作圖法在對角線AC上求作一點E使得△ABC∽△CDE.(保留作圖痕跡不寫作法)23.(8分)如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).請畫出△ABC向左平移5個單位長度后得到的△ABC;請畫出△ABC關于原點對稱的△ABC;在軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.24.(10分)如圖,在四邊形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于對角線AC,垂足是E,連接BE.(1)求證:四邊形ABCD是平行四邊形;(2)若AB=BE=2,sin∠ACD=,求四邊形ABCD的面積.25.(10分)為了解某校初二學生每周上網(wǎng)的時間,兩位學生進行了抽樣調查.小麗調查了初二電腦愛好者中40名學生每周上網(wǎng)的時間;小杰從全校400名初二學生中隨機抽取了40名學生,調查了每周上網(wǎng)的時間.小麗與小杰整理各自樣本數(shù)據(jù),如下表所示.時間段(小時/周)小麗抽樣(人數(shù))小杰抽樣(人數(shù))0~16221~210102~31663~482(1)你認為哪位學生抽取的樣本不合理?請說明理由.專家建議每周上網(wǎng)2小時以上(含2小時)的學生應適當減少上網(wǎng)的時間,估計該校全體初二學生中有多少名學生應適當減少上網(wǎng)的時間.26.(12分)初三(5)班綜合實踐小組去湖濱花園測量人工湖的長,如圖A、D是人工湖邊的兩座雕塑,AB、BC是湖濱花園的小路,小東同學進行如下測量,B點在A點北偏東60°方向,C點在B點北偏東45°方向,C點在D點正東方向,且測得AB=20米,BC=40米,求AD的長.(≈1.732,≈1.414,結果精確到0.01米)27.(12分)如圖,正方形ABCD的邊長為4,點E,F(xiàn)分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.填空:∠AHC∠ACG;(填“>”或“<”或“=”)線段AC,AG,AH什么關系?請說明理由;設AE=m,①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數(shù)關系式;如果不變化,請求出定值.②請直接寫出使△CGH是等腰三角形的m值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】分析:根據(jù)平行四邊形、矩形、菱形、正方形的判定定理判斷即可.詳解:對角線互相平分的四邊形是平行四邊形,A錯誤;對角線相等的平行四邊形是矩形,B錯誤;對角線互相垂直的平行四邊形是菱形,C正確;對角線互相垂直且相等的平行四邊形是正方形;故選:C.點睛:本題考查的是命題的真假判斷,正確的命題叫真命題,錯誤的命題叫做假命題.判斷命題的真假關鍵是要熟悉課本中的性質定理.2、C【解析】

嚴格按照圖中的方法親自動手操作一下,即可很直觀地呈現(xiàn)出來.【詳解】根據(jù)題意知,剪去的紙片一定是一個四邊形,且對角線互相垂直.故選C.【點睛】本題主要考查學生的動手能力及空間想象能力.對于此類問題,學生只要親自動手操作,答案就會很直觀地呈現(xiàn).3、D【解析】

根據(jù)分式方程的解的定義把x=4代入原分式方程得到關于a的一次方程,解得a的值即可.【詳解】解:把x=4代入方程,得,解得a=1.經(jīng)檢驗,a=1是原方程的解故選D.點睛:此題考查了分式方程的解,分式方程注意分母不能為2.4、B【解析】分析:直接利用二次函數(shù)圖象的開口方向以及圖象與x軸的交點,進而分別分析得出答案.詳解:①∵二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,且開口向下,∴x=1時,y=a+b+c,即二次函數(shù)的最大值為a+b+c,故①正確;②當x=﹣1時,a﹣b+c=0,故②錯誤;③圖象與x軸有2個交點,故b2﹣4ac>0,故③錯誤;④∵圖象的對稱軸為x=1,與x軸交于點A、點B(﹣1,0),∴A(3,0),故當y>0時,﹣1<x<3,故④正確.故選B.點睛:此題主要考查了二次函數(shù)的性質以及二次函數(shù)最值等知識,正確得出A點坐標是解題關鍵.5、A【解析】

由兩直線平行,同位角相等,可求得∠3的度數(shù),然后求得∠2的度數(shù).【詳解】如圖,∵∠1=40°,∴∠3=∠1=40°,∴∠2=90°-40°=50°.故選A.【點睛】此題考查了平行線的性質.利用兩直線平行,同位角相等是解此題的關鍵.6、A【解析】根據(jù)同底數(shù)冪的乘法,同底數(shù)冪的除法,合并同類項,冪的乘方與積的乘方運算法則逐一計算作出判斷:A、x?x4=x5,原式計算正確,故本選項正確;B、x6÷x3=x3,原式計算錯誤,故本選項錯誤;C、3x2﹣x2=2x2,原式計算錯誤,故本選項錯誤;D、(2x2)3=8x,原式計算錯誤,故本選項錯誤.故選A.7、C【解析】

已知對角線的長度,根據(jù)菱形的面積計算公式即可計算菱形的面積.【詳解】根據(jù)對角線的長可以求得菱形的面積,根據(jù)S=ab=×6cm×8cm=14cm1.故選:C.【點睛】考查菱形的面積公式,熟練掌握菱形面積的兩種計算方法是解題的關鍵.8、A【解析】

解:∵四邊形ABCD為矩形,∴AD=BC=10,AB=CD=8,∵矩形ABCD沿直線AE折疊,頂點D恰好落在BC邊上的F處,∴AF=AD=10,EF=DE,在Rt△ABF中,∵BF==6,∴CF=BC-BF=10-6=4,∴△CEF的周長為:CE+EF+CF=CE+DE+CF=CD+CF=8+4=1.故選A.9、C【解析】

①圖中有3個等腰直角三角形,故結論錯誤;②根據(jù)ASA證明即可,結論正確;③利用面積法證明即可,結論正確;④利用三角形的中線的性質即可證明,結論正確.【詳解】∵CE⊥AB,∠ACE=45°,∴△ACE是等腰直角三角形,∵AF=CF,∴EF=AF=CF,∴△AEF,△EFC都是等腰直角三角形,∴圖中共有3個等腰直角三角形,故①錯誤,∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,∴∠EAH=∠BCE,∵AE=EC,∠AEH=∠CEB=90°,∴△AHE≌△CBE,故②正確,∵S△ABC=BC?AD=AB?CE,AB=AC=AE,AE=CE,∴BC?AD=CE2,故③正確,∵AB=AC,AD⊥BC,∴BD=DC,∴S△ABC=2S△ADC,∵AF=FC,∴S△ADC=2S△ADF,∴S△ABC=4S△ADF.故選C.【點睛】本題考查相似三角形的判定和性質、等腰直角三角形的判定和性質、三角形的面積等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考選擇題中的壓軸題.10、D【解析】

根據(jù)銳角三角函數(shù)的定義可得結論.【詳解】在Rt△ABC中,∠ACB=90°,AB=c,∠A=a,根據(jù)銳角三角函數(shù)的定義可得sinα=,∴BC=c?sinα,∵∠A+∠B=90°,∠DCB+∠B=90°,∴∠DCB=∠A=α在Rt△DCB中,∠CDB=90°,∴cos∠DCB=,∴CD=BC?cosα=c?sinα?cosα,故選D.11、D【解析】

根據(jù)正比例函數(shù)圖象與系數(shù)的關系列出關于k的不等式k+1<0,然后解不等式即可.【詳解】解:∵正比例函數(shù)y=(k+1)x中,y的值隨自變量x的值增大而減小,∴k+1<0,解得,k<-1;故選D.【點睛】本題主要考查正比例函數(shù)圖象在坐標平面內的位置與k的關系.解答本題注意理解:直線y=kx所在的位置與k的符號有直接的關系.k>0時,直線必經(jīng)過一、三象限,y隨x的增大而增大;k<0時,直線必經(jīng)過二、四象限,y隨x的增大而減?。?2、A【解析】解:如圖,連接BE,設BE與AC交于點P′,∵四邊形ABCD是正方形,∴點B與D關于AC對稱,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最?。碢在AC與BE的交點上時,PD+PE最小,為BE的長度.∵直角△CBE中,∠BCE=90°,BC=9,CE=CD=3,∴BE==.故選A.點睛:此題考查了軸對稱﹣﹣最短路線問題,正方形的性質,要靈活運用對稱性解決此類問題.找出P點位置是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、2【解析】試題分析:由OA=1,OC=6,可得矩形OABC的面積為6;再根據(jù)反比例函數(shù)系數(shù)k的幾何意義,可知k=6,∴反比例函數(shù)的解析式為;設正方形ADEF的邊長為a,則點E的坐標為(a+1,a),∵點E在拋物線上,∴,整理得,解得或(舍去),故正方形ADEF的邊長是2.考點:反比例函數(shù)系數(shù)k的幾何意義.14、【解析】根據(jù)負整指數(shù)冪的性質和二次根式的性質,可知=.故答案為.15、【解析】

根據(jù)面積法:求出豆子落在黑色方格的面積與總面積的比即可解答.【詳解】∵共有15個方格,其中黑色方格占5個,∴這粒豆子落在黑色方格中的概率是=,故答案為.【點睛】此題考查了幾何概率的求法,利用概率=相應的面積與總面積之比求出是解題關鍵.16、20【解析】分析:根據(jù)中位數(shù)的定義進行計算即可得到這組數(shù)據(jù)的中位數(shù).詳解:由中位數(shù)的定義可知,這次跳繩次數(shù)的中位數(shù)是將這25位同學的跳繩次數(shù)按從小到大排列后的第12個和13個數(shù)據(jù)的平均數(shù),∵由表格中的數(shù)據(jù)分析可知,這組數(shù)據(jù)按從小到大排列后的第12個和第13個數(shù)據(jù)都是20,∴這組跳繩次數(shù)的中位數(shù)是20.故答案為:20.點睛:本題考查的是怎樣確定一組數(shù)據(jù)的中位數(shù),解題的關鍵是弄清“中位數(shù)”的定義:“把一組數(shù)據(jù)按從小到大的順序排列后,若數(shù)據(jù)組中共有奇數(shù)個數(shù)據(jù),則最中間一個數(shù)據(jù)是該組數(shù)據(jù)的中位數(shù);若數(shù)據(jù)組中數(shù)據(jù)的個數(shù)為偶數(shù)個,則最中間兩個數(shù)據(jù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù)”.17、(x+2)(x﹣2)【解析】【分析】直接利用平方差公式進行因式分解即可.【詳解】x2﹣4=x2-22=(x+2)(x﹣2),故答案為:(x+2)(x﹣2).【點睛】本題考查了平方差公式因式分解.能用平方差公式進行因式分解的式子的特點是:兩項平方項,符號相反.18、.【解析】

依據(jù)點A(1,2)在x軸上的正投影為點A′,即可得到A'O=1,AA'=2,AO=,進而得出cos∠AOA′的值.【詳解】如圖所示,點A(1,2)在x軸上的正投影為點A′,∴A'O=1,AA'=2,∴AO=,∴cos∠AOA′=,故答案為:.【點睛】本題主要考查了平行投影以及平面直角坐標系,過已知點向坐標軸作垂線,然后求出相關的線段長,是解決這類問題的基本方法和規(guī)律.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)一臺A型無人機售價800元,一臺B型無人機的售價1000元;(2)①y=﹣200x+50000;②購進A型、B型無人機各16臺、34臺時,才能使總費用最少.【解析】

(1)根據(jù)3臺A型無人機和4臺B型無人機共需6400元,4臺A型無人機和3臺B型無人機共需6200元,可以列出相應的方程組,從而可以解答本題;(2)①根據(jù)題意可以得到y(tǒng)與x的函數(shù)關系式;②根據(jù)①中的函數(shù)關系式和B型無人機的數(shù)量不少于A型無人機的數(shù)量的2倍,可以求得購進A型、B型無人機各多少臺,才能使總費用最少.【詳解】解:(1)設一臺型無人機售價元,一臺型無人機的售價元,,解得,,答:一臺型無人機售價元,一臺型無人機的售價元;(2)①由題意可得,即y與x的函數(shù)關系式為;②∵B型無人機的數(shù)量不少于A型無人機的數(shù)量的2倍,,解得,,,∴當時,y取得最小值,此時,答:購進型、型無人機各臺、臺時,才能使總費用最少.【點睛】本題考查二元一次方程組的應用、一次函數(shù)的應用、一元一次不等式的應用,解答本題的關鍵是明確題意,利用一次函數(shù)的性質和方程的知識解答.20、(1);(2).【解析】【分析】(1)根據(jù)題意可求得2個“-2”所占的扇形圓心角的度數(shù),再利用概率公式進行計算即可得;(2)由題意可得轉出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情況,再找出符合條件的可能性,根據(jù)概率公式進行計算即可得.【詳解】(1)由題意可知:“1”和“3”所占的扇形圓心角為120°,所以2個“-2”所占的扇形圓心角為360°-2×120°=120°,∴轉動轉盤一次,求轉出的數(shù)字是-2的概率為=;(2)由(1)可知,該轉盤轉出“1”、“3”、“-2”的概率相同,均為,所有可能性如下表所示:第一次第二次1-231(1,1)(1,-2)(1,3)-2(-2,1)(-2,-2)(-2,3)3(3,1)(3,-2)(3,3)由上表可知:所有可能的結果共9種,其中數(shù)字之積為正數(shù)的的有5種,其概率為.【點睛】本題考查了列表法或樹狀圖法求概率,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.21、旗桿AB的高為(4+1)m.【解析】試題分析:過點C作CE⊥AB于E,過點B作BF⊥CD于F.在Rt△BFD中,分別求出DF、BF的長度.在Rt△ACE中,求出AE、CE的長度,繼而可求得AB的長度.試題解析:解:過點C作CE⊥AB于E,過點B作BF⊥CD于F,過點B作BF⊥CD于F.在Rt△BFD中,∵∠DBF=30°,sin∠DBF==,cos∠DBF==.∵BD=8,∴DF=4,BF=.∵AB∥CD,CE⊥AB,BF⊥CD,∴四邊形BFCE為矩形,∴BF=CE=4,CF=BE=CD﹣DF=1.在Rt△ACE中,∠ACE=45°,∴AE=CE=4,∴AB=4+1(m).答:旗桿AB的高為(4+1)m.22、詳見解析【解析】

利用尺規(guī)過D作DE⊥AC,,交AC于E,即可使得△ABC∽△CDE.【詳解】解:過D作DE⊥AC,如圖所示,△CDE即為所求:【點睛】本題主要考查了尺規(guī)作圖,相似三角形的判定,解決問題的關鍵是掌握相似三角形的判定方法.23、(1)圖形見解析;(2)圖形見解析;(3)圖形見解析,點P的坐標為:(2,0)【解析】

(1)按題目的要求平移就可以了關于原點對稱的點的坐標變化是:橫、縱坐標都變?yōu)橄喾磾?shù),找到對應點后按順序連接即可(3)AB的長是不變的,要使△PAB的周長最小,即要求PA+PB最小,轉為了已知直線與直線一側的兩點,在直線上找一個點,使這點到已知兩點的線段之和最小,方法是作A、B兩點中的某點關于該直線的對稱點,然后連接對稱點與另一點.【詳解】(1)△A1B1C1如圖所示;(2)△A2B2C2如圖所示;(3)△PAB如圖所示,點P的坐標為:(2,0)【點睛】1、圖形的平移;2、中心對稱;3、軸對稱的應用24、(1)證明見解析;(2)S平行四邊形ABCD=3.【解析】試題分析:(1)根據(jù)平行四邊形的性質得出∠ABC+∠DCB=180°,推出∠ADC+∠BCD=180°,根據(jù)平行線的判定得出AD∥BC,根據(jù)平行四邊形的判定推出即可;(2)證明△ABE是等邊三角形,得出AE=AB=2,由直角三角形的性質求出CE和DE,得出AC的長,即可求出四邊形ABCD的面積.試題解析:(1)∵AB∥CD,∴∠ABC+∠DCB=180°,∵∠ABC=∠ADC,∴∠ADC+∠BCD=180°,∴AD∥BC,∵AB∥CD,∴四邊形ABCD是平行四邊形;(2)∵sin∠ACD=,∴∠ACD=60°,∵四邊形ABCD是平行四邊形,∴AB∥CD,CD=AB=2,∴∠BAC=∠ACD=60°,∵AB=BE=2,∴△ABE是等邊三角形,∴AE=AB=2,∵DE⊥AC,∴∠CDE=90°﹣60°=30°,∴CE=CD=1,∴DE=CE=,AC=AE+CE=3,∴S平行四邊形ABCD=2S△ACD=AC?DE=3.25、(1)小麗;(2)80【解析】

解:(1)小麗;因為她沒有從全校初二學生中隨機進行抽查,不具有隨機性與代表性.(2).答:該校全體初二學生中有80名同學應適當減少上網(wǎng)的時間.26、AD=38.28米.【解析】

過點B作BE⊥DA,BF⊥DC,垂足分別為E、F,已知AD=AE+ED,則分別求得AE、DE的長即可求得AD的長.【詳解】過點B作BE⊥DA,BF⊥DC,垂足分別為E,F(xiàn),由題意知,A

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論