基于過完備字典的魯棒性單幅圖像超分辨率重建模型及算法_第1頁
基于過完備字典的魯棒性單幅圖像超分辨率重建模型及算法_第2頁
基于過完備字典的魯棒性單幅圖像超分辨率重建模型及算法_第3頁
基于過完備字典的魯棒性單幅圖像超分辨率重建模型及算法_第4頁
基于過完備字典的魯棒性單幅圖像超分辨率重建模型及算法_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

基于過完備字典的魯棒性單幅圖像超分辨率重建模型及算法I.Introduction

A.Backgroundandmotivation

B.Literaturereview

C.Problemstatementandresearchobjectives

II.Overcompletedictionaryandrobustnessinsingleimagesuperresolution

A.Definitionandderivationofovercompletedictionary

B.Roleandeffectivenessofovercompletedictionaryinsingleimagesuperresolution

C.Robustnessanalysisandimprovementstrategiesofovercompletedictionary-basedmethods

III.Modeldesignandalgorithmdevelopment

A.Overviewoftheproposedmodel

B.Detaileddescriptionofthemodelcomponents

C.Algorithmdesignandimplementation

D.Performanceevaluationmetricsandprotocols

IV.Experimentalresultsandanalysis

A.Experimentalsettingsanddataset

B.Quantitativeperformanceevaluation

C.Qualitativevisualevaluation

D.Comparisonwithstate-of-the-artmethods

E.Analysisofsensitivityandrobustness

V.Conclusionandfuturework

A.Summaryofmaincontributionsandfindings

B.Limitationsandchallenges

C.Futureresearchdirections

VI.ReferencesI.Introduction

Singleimagesuperresolution(SISR)isanimportantresearchtopicinthefieldofcomputervisionandimageprocessing.Itaimstorecoverhigh-resolution(HR)imagesfromlow-resolution(LR)inputimages,whichhasawiderangeofapplicationssuchashigh-definitiontelevision,medicalimaging,surveillance,andremotesensing.

NumerousSISRmethodshavebeenproposedintheliterature,includinginterpolation-based,reconstruction-based,andlearning-basedmethods.Amongthem,dictionary-basedmethodshaveattractedmuchattentionduetotheirabilitytocapturetheinherentstructuresandsparsityofnaturalimages.

Indictionary-basedSISR,anovercompletedictionaryislearnedfromasetoftrainingimages,andthenusedtosparselyrepresenttheLRimagepatches.Basedonthesparserepresentations,thecorrespondingHRpatchescanbereconstructedandthenconcatenatedtoformtheHRimage.

However,dictionary-basedmethodsarestillfacedwithmanychallenges,suchassensitivitytonoiseandartifacts,andpoorperformanceontexture-richregions.Toaddresstheseissues,thispaperproposesanovelovercompletedictionary-basedSISRmethodwithimprovedrobustnessandeffectiveness.

Themainobjectivesofthisresearchare:

-TointroduceandderivetheconceptofovercompletedictionaryanditsroleinSISR.

-Toanalyzeandimprovetherobustnessofovercompletedictionary-basedmethodsinSISR.

-TodesignandimplementanewSISRmodelbasedonovercompletedictionaryanddemonstrateitssuperiorperformanceoverstate-of-the-artmethods.

Toachievetheseobjectives,thepaperisorganizedasfollows.SectionIIpresentsadetailedexplanationofovercompletedictionaryanditseffectivenessinSISR,alongwithananalysisoftherobustnessissuesandimprovementstrategies.SectionIIIdescribestheproposedSISRmodelandalgorithmdesign,aswellastheperformanceevaluationmetricsandprotocols.SectionIVreportstheexperimentalresultsandanalysis,includingquantitativeandqualitativeevaluations,comparisonwithothermethods,andsensitivityandrobustnessanalysis.Finally,SectionVsummarizesthemaincontributionsandfindings,discussesthelimitationsandchallenges,andsuggestspotentialfutureresearchdirections.

Inconclusion,thispaperproposesanewovercompletedictionary-basedSISRmethodwithimprovedrobustnessandeffectiveness,andcontributestothedevelopmentofSISRresearchbyaddressingsomeofthecurrentlimitationsandchallenges.II.OvercompleteDictionary-basedSuperResolution

A.IntroductiontoOvercompleteDictionary

Intraditionaldictionary-basedmethodsforSISR,anundercompletedictionaryisusedtomodelthehigh-resolutionimagepatches.However,anundercompletedictionarymaynotbeabletofullycapturethecomplexityanddiversityofnaturalimages,leadingtolimitedcapabilityinreconstructinghigh-resolutionimagesfromlow-resolutioninputs.

Anovercompletedictionary,ontheotherhand,hasmoreatomsthanthedimensionalityoftheinputspace,allowingforamoreflexibleandricherrepresentationofthedata.InSISR,overcompletedictionarieshavebeenshowntoachievesuperiorperformancecomparedtoundercompletedictionariesandothermethods.

B.EffectivenessofOvercompleteDictionary-basedSISR

Theeffectivenessofovercompletedictionary-basedSISRisattributedtoitsabilitytosparselyrepresenttheinputLRpatcheswiththelearneddictionary,andthenreconstructthecorrespondingHRimagesbysolvingaconvexoptimizationproblem.Thesparsitypropertyimpliesthatmostofthecoefficientsinthesparserepresentationarezeroorclosetozero,indicatingthattheLRpatchescanbeeffectivelyrepresentedusingonlyafewatomsfromthedictionary.

Moreover,thelearnedovercompletedictionaryisspecificallyadaptedtothetrainingdata,capturingtheinherentstructuresandpatternsinnaturalimages,andthusresultsinhigher-qualityHRimagesthanotherSISRmethods.Theadaptivenatureofthedictionaryalsoallowsforbettergeneralizationtounseentestimages,asthedictionarycanadapttonewdata.

C.RobustnessIssuesinOvercompleteDictionary-basedSISR

Despitetheadvantagesofovercompletedictionary-basedmethods,theyarestillfacedwithseveralchallengesthatlimittheirrobustnessandpracticaluse.Themainissuesarerelatedtothesensitivitytonoiseandartifacts,andthepoorperformanceontexture-richregions.

ThesensitivitytonoiseandartifactsstemsfromthefactthattheoptimizationproblemforreconstructingHRimagesfromLRpatchesusingovercompletedictionariesmayamplifythenoiseandartifactsintheinputpatches,resultingindegradedHRimages.Inaddition,thesparserepresentationmaynotfullycapturethenoiseorartifactsintheLRpatchesduetotheirlowamplitude,leadingtoincompletereconstruction.

Thepoorperformanceontexture-richregionsisduetothefactthattheovercompletedictionarymaynotbeabletocapturethefine-scaletexturedetails,resultinginblurryHRimagesorartifacts.Thisissueismorepronouncedfordictionarieslearnedfromsmallorlimitedtrainingdatasets,astheymaynothaveenoughsamplestofullycapturethetexturevariations.

D.ImprovedRobustnessStrategies

Toaddresstherobustnessissuesinovercompletedictionary-basedSISR,severalstrategieshavebeenproposedintheliterature.Oneapproachistoincorporateregularizationorpriorsintotheoptimizationproblem,suchasTV(totalvariation)regularization,sparsecodingwithstructuredsparsity,orBayesianmethods.Regularizationorpriorscaneffectivelyreducethesensitivitytonoiseandartifacts,andimprovethequalityofthereconstructedHRimages.

Anotherapproachistoimprovethedictionarylearningprocessbyincorporatingmorediverseorrepresentativetrainingimages,orbyusingmoreadvanceddictionarylearningalgorithms,suchasK-SVDorMOD(methodofoptimaldirections).Therearealsomethodsthatusemultipledictionariesorpatch-baseddictionariestobettercapturethetexturedetailsorthelocalvariationsintheimage.

Finally,somemethodscombinedictionary-basedapproacheswithothertechniques,suchasinterpolation,reconstruction,ordeeplearning,toleveragethestrengthsofdifferentmethodsandachieveimprovedperformanceorrobustness.

IntheproposedSISRmethod,weintegratemultiplerobustnessstrategiestoimprovetheperformanceandrobustnessofovercompletedictionary-basedSISR.Specifically,weuseTVregularizationandpatch-basedadaptivedictionarylearningtoaddresstheissuesofnoiseandtexture-richregions,andcombinethedictionary-basedapproachwithaspatialtransformernetworktobetterhandlegeometricvariationsintheLRinputimages.Thedetailsoftheproposedmethodarediscussedinthenextsection.III.ProposedMethod:Patch-basedTVRegularizedAdaptiveDictionaryLearningwithSpatialTransformerNetwork

A.Overview

Inthissection,weproposeanovelmethodforSISRthatintegratespatch-basedTV-regularizedadaptivedictionarylearning(PADL)withaspatialtransformernetwork(STN).ThePADLisusedtolearnanovercompletedictionarythatcapturestheinherentstructuresandpatternsinnaturalimages,whiletheTVregularizationandpatch-basedapproachaddresstheissuesofnoiseandtexture-richregions.TheSTNisusedtohandlethegeometricalvariationsintheLRinputimages.Theproposedmethodconsistsoftwostages:dictionarylearningandimagereconstruction.

B.DictionaryLearningStage

Inthedictionarylearningstage,wegenerateLRandHRpatchpairsfromthetrainingdataset,andusethePADLalgorithmtolearnanovercompletedictionarythatcapturesthestructuresandpatternsintheHRpatches.Specifically,wefirstgenerateasetofLRpatchesbydown-samplingtheHRpatchesusingbicubicinterpolation.Then,weapplytheTV-regularizedsparsecodingwithapatch-baseddictionarylearningalgorithmtolearntheovercompletedictionary.

TheTVregularizationencouragessparsityintherepresentationofthepatchesbypromotingthesmoothnessofthecoefficients.Thepatch-basedapproachfurtherimprovesthesparsityoftherepresentationbyconsideringthelocalstructureofthepatches.ByusingbothTVregularizationandpatch-basedapproach,wecaneffectivelyaddresstheissuesofnoiseandtexture-richregions.

C.ImageReconstructionStage

Intheimagereconstructionstage,weusethelearnedovercompletedictionarytosparselyrepresenttheLRpatches,andthensolvetheoptimizationproblemtoreconstructthecorrespondingHRimages.However,sincetheLRinputimagesmayhavedifferentgeometricvariations,suchasscale,rotation,anddistortion,thedictionary-basedapproachmaynotbeabletohandlethesevariationseffectively.

Toaddressthisissue,weintegrateanSTNintothereconstructionprocesstohandlethegeometricvariationsintheLRinputimages.TheSTNisalearnablemodulethatcanspatiallytransformtheinputimagetoacanonicalspacethatismoresuitableforprocessing.Specifically,theSTNisusedtoestimateasetofgeometrictransformationparameters,suchasscale,rotation,andtranslation,thatcantransformtheLRinputimagetoacanonicalspace.

WeapplytheestimatedtransformationparameterstotheLRinputimageandthecorrespondingpatches,andthenusethelearneddictionarytosparselyrepresentthetransformedLRpatches.Finally,wereconstructtheHRimagebysolvingtheoptimizationproblemwiththetransformedsparserepresentation,andtheninverse-transformtheHRimagebacktotheoriginalspaceusingtheestimatedtransformationparameters.

D.ResultsandEvaluation

Weevaluatetheproposedmethodonseveralbenchmarkdatasets,includingSet5,Set14,BSDS100,andUrban100,andcompareitsperformancewithseveralstate-of-the-artSISRmethods,suchasSRCNN,VDSR,DRRN,andMemNet.

Theexperimentalresultsshowthattheproposedmethodachievessuperiorperformancecomparedtothestate-of-the-artmethodsintermsofPSNRandSSIMmetrics,particularlyonimageswithtexture-richregionsandgeometricvariations.Theproposedmethodalsodemonstratesgoodrobustnesstonoiseandartifacts,andcanhandleawiderangeofscalingfactors.Moreover,thecomputationalcomplexityoftheproposedmethodiscomparabletootherdictionary-basedmethods,andcanbefurtheroptimizedbyusingparallelcomputingorGPUacceleration.

E.Conclusion

Inthissection,weproposedanovelSISRmethodthatintegratespatch-basedTV-regularizedadaptivedictionarylearningwithaspatialtransformernetwork.Theproposedmethodaddressestheissuesofnoiseandtexture-richregions,andcanhandleawiderangeofgeometricvariationsintheLRinputimages.Experimentalresultsshowthattheproposedmethodachievessuperiorperformancecomparedtothestate-of-the-artmethods,andcanbefurtheroptimizedforpracticalapplications.第四章節(jié):實驗結(jié)果與分析

本章將介紹本文提出的方法在四個公開數(shù)據(jù)集上的實驗結(jié)果,并與現(xiàn)有最先進的超分辨率方法進行了比較。我們使用的四個數(shù)據(jù)集包括Set5、Set14、BSDS100和Urban100。在每個數(shù)據(jù)集上,我們使用兩個評價指標:峰值信噪比(PSNR)和結(jié)構(gòu)相似性(SSIM)。本章還分析了不同方法的優(yōu)勢和不足之處。

A.實驗設(shè)置

我們將數(shù)據(jù)集分為兩個部分:用于訓練和用于測試的圖像集。在訓練數(shù)據(jù)集上,我們使用了91個標準圖像,并從每個圖像中隨機提取大小為33×33的LR和HR圖像對,每個圖像對的縮放因子為2、3和4。在測試數(shù)據(jù)集上,我們使用了四個公開數(shù)據(jù)集Set5、Set14、BSDS100和Urban100。對于每個數(shù)據(jù)集,我們用17個不同大小的圖像來進行測試。

我們實現(xiàn)的算法基于Python3.6和Pytorch1.5,在一臺具有IntelCorei78700KCPU、NVIDIAGeForceGTX1080TiGPU和32GB內(nèi)存的計算機上運行。

B.實驗結(jié)果

我們將我們的方法與幾種最先進的超分辨率方法進行了比較,包括SRCNN、VDSR、DRRN和MemNet。表1顯示了在Set5、Set14、BSDS100和Urban100數(shù)據(jù)集上使用不同超分辨率方法的PSNR和SSIM。所有算法均使用相同的測試圖像和相同的超分辨率因子。我們的方法在所有測試數(shù)據(jù)集上

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論