高二數(shù)學(xué)復(fù)習(xí)的重要點(diǎn)及知識(shí)點(diǎn)總結(jié)_第1頁(yè)
高二數(shù)學(xué)復(fù)習(xí)的重要點(diǎn)及知識(shí)點(diǎn)總結(jié)_第2頁(yè)
高二數(shù)學(xué)復(fù)習(xí)的重要點(diǎn)及知識(shí)點(diǎn)總結(jié)_第3頁(yè)
高二數(shù)學(xué)復(fù)習(xí)的重要點(diǎn)及知識(shí)點(diǎn)總結(jié)_第4頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

高二數(shù)學(xué)復(fù)習(xí)的重要點(diǎn)及知識(shí)點(diǎn)總結(jié)

函數(shù)的性質(zhì):

函數(shù)的單調(diào)性、奇偶性、周期性

單調(diào)性:定義:留意定義是相對(duì)與某個(gè)詳細(xì)的區(qū)間而言。

判定(方法)有:定義法(作差比擬和作商比擬)

導(dǎo)數(shù)法(適用于多項(xiàng)式函數(shù))

復(fù)合函數(shù)法和圖像法。

應(yīng)用:比擬大小,證明不等式,解不等式。

奇偶性:定義:留意區(qū)間是否關(guān)于原點(diǎn)對(duì)稱,比擬f(x)與f(-x)的關(guān)系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);

f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。

判別方法:定義法,圖像法,復(fù)合函數(shù)法

應(yīng)用:把函數(shù)值進(jìn)展轉(zhuǎn)化求解。

周期性:定義:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿意:f(x+T)=f(x),則T為函數(shù)f(x)的周期。

其他:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿意:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.

應(yīng)用:求函數(shù)值和某個(gè)區(qū)間上的函數(shù)解析式。

高二數(shù)學(xué)復(fù)習(xí)的重要點(diǎn)及學(xué)問(wèn)點(diǎn)總結(jié)2

復(fù)合函數(shù)定義域

若函數(shù)y=f(u)的定義域是B,u=g(x)的定義域是A,則復(fù)合函數(shù)y=f[g(x)]的定義域是D={x|x∈A,且g(x)∈B}綜合考慮各局部的x的取值范圍,取他們的交集。

求函數(shù)的定義域主要應(yīng)考慮以下幾點(diǎn):

⑴當(dāng)為整式或奇次根式時(shí),R的值域;

⑵當(dāng)為偶次根式時(shí),被開(kāi)方數(shù)不小于0(即≥0);

⑶當(dāng)為分式時(shí),分母不為0;當(dāng)分母是偶次根式時(shí),被開(kāi)方數(shù)大于0;

⑷當(dāng)為指數(shù)式時(shí),對(duì)零指數(shù)冪或負(fù)整數(shù)指數(shù)冪,底不為0。

⑸當(dāng)是由一些根本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的,它的定義域應(yīng)是使各局部都有意義的自變量的值組成的集合,即求各局部定義域集合的交集。

⑹分段函數(shù)的定義域是各段上自變量的取值集合的并集。

⑺由實(shí)際問(wèn)題建立的函數(shù),除了要考慮使解析式有意義外,還要考慮實(shí)際意義對(duì)自變量的要求

⑻對(duì)于含參數(shù)字母的函數(shù),求定義域時(shí)一般要對(duì)字母的取值狀況進(jìn)展分類爭(zhēng)論,并要留意函數(shù)的定義域?yàn)榉强占稀?/p>

⑼對(duì)數(shù)函數(shù)的真數(shù)必需大于零,底數(shù)大于零且不等于1。

⑽三角函數(shù)中的切割函數(shù)要留意對(duì)角變量的限制。

復(fù)合函數(shù)常見(jiàn)題型

(ⅰ)已知f(x)定義域?yàn)锳,求f[g(x)]的定義域:實(shí)質(zhì)是已知g(x)的范圍為A,以此求出x的范圍。

(ⅱ)已知f[g(x)]定義域?yàn)锽,求f(x)的定義域:實(shí)質(zhì)是已知x的范圍為B,以此求出g(x)的范圍。

(ⅲ)已知f[g(x)]定義域?yàn)镃,求f[h(x)]的定義域:實(shí)質(zhì)是已知x的范圍為C,以此先求出g(x)的范圍(即f(x)的定義域);然后將其作為h(x)的范圍,以此再求出x的范圍。

高二數(shù)學(xué)復(fù)習(xí)的重要點(diǎn)及學(xué)問(wèn)點(diǎn)總結(jié)3

導(dǎo)數(shù)是微積分中的`重要根底概念。當(dāng)函數(shù)=f(x)的自變量x在一點(diǎn)x0上產(chǎn)生一個(gè)增量Δx時(shí),函數(shù)輸出值的增量Δ與自變量增量Δx的比值在Δx趨于0時(shí)的極限a假如存在,a即為在x0處的導(dǎo)數(shù),記作f(x0)或df(x0)/dx。

導(dǎo)數(shù)是函數(shù)的局部性質(zhì)。一個(gè)函數(shù)在某一點(diǎn)的導(dǎo)數(shù)描述了這個(gè)函數(shù)在這一點(diǎn)四周的變化率。假如函數(shù)的自變量和取值都是實(shí)數(shù)的話,函數(shù)在某一點(diǎn)的導(dǎo)數(shù)就是該函數(shù)所代表的曲線在這一點(diǎn)上的切線斜率。導(dǎo)數(shù)的本質(zhì)是通過(guò)極限的概念對(duì)函數(shù)進(jìn)展局部的線性靠近。例如在運(yùn)動(dòng)學(xué)中,物體的位移對(duì)于時(shí)間的導(dǎo)數(shù)就是物體的瞬時(shí)速度。

不是全部的函數(shù)都有導(dǎo)數(shù),一個(gè)函數(shù)也不肯定在全部的點(diǎn)上都有導(dǎo)數(shù)。若某函數(shù)在某一點(diǎn)導(dǎo)數(shù)存在,則稱其在這一點(diǎn)可導(dǎo),否則稱為不行導(dǎo)。然而,可導(dǎo)的函數(shù)肯定連續(xù);不連續(xù)的函數(shù)肯定不行導(dǎo)。

對(duì)于可導(dǎo)的函數(shù)f(x),xf(x)也是一個(gè)函數(shù),稱作f(x)的導(dǎo)函數(shù)。查找已知的函數(shù)在某點(diǎn)的導(dǎo)數(shù)或其導(dǎo)函數(shù)的過(guò)程稱為求導(dǎo)。實(shí)質(zhì)上,求導(dǎo)就是一個(gè)求極限的過(guò)程,導(dǎo)數(shù)的四則運(yùn)算法則也于極限的四則運(yùn)算法則。反之,已知導(dǎo)函數(shù)也可以倒過(guò)來(lái)求原來(lái)的函數(shù),即不定積分。微積分根本定理說(shuō)明白求原函數(shù)與積分是等價(jià)的。求導(dǎo)和積分是一對(duì)互逆的操作,它們都是微積分學(xué)中最為根底的概念。

設(shè)函數(shù)=f(x)在點(diǎn)x0的某個(gè)鄰域內(nèi)有定義,當(dāng)自變量x在x0處有增量Δx,(x0+Δx)也在該鄰域內(nèi)時(shí),相應(yīng)地函數(shù)取得增量Δ=f(x0+Δx)-f

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論