版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2021-2022中考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,BD∥AC,BE平分∠ABD,交AC于點E,若∠A=40°,則∠1的度數(shù)為()A.80° B.70° C.60° D.40°2.某廠接到加工720件衣服的訂單,預計每天做48件,正好按時完成,后因客戶要求提前5天交貨,設每天應多做x件才能按時交貨,則x應滿足的方程為()A. B.C. D.3.如圖,某地修建高速公路,要從A地向B地修一條隧道(點A、B在同一水平面上).為了測量A、B兩地之間的距離,一架直升飛機從A地出發(fā),垂直上升800米到達C處,在C處觀察B地的俯角為α,則A、B兩地之間的距離為()A.800sinα米 B.800tanα米 C.米 D.米4.計算﹣1﹣(﹣4)的結果為()A.﹣3 B.3 C.﹣5 D.55.如圖是二次函數(shù)y=ax2+bx+c的圖象,有下列結論:①ac<1;②a+b<1;③4ac>b2;④4a+2b+c<1.其中正確的個數(shù)是()A.1個 B.2個 C.3個 D.4個6.如右圖是用八塊完全相同的小正方體搭成的幾何體,從正面看幾何體得到的圖形是()A. B.C. D.7.如圖,有一些點組成形如四邊形的圖案,每條“邊”(包括頂點)有n(n>1)個點.當n=2018時,這個圖形總的點數(shù)S為()A.8064 B.8067 C.8068 D.80728.如圖,AB是⊙O的切線,半徑OA=2,OB交⊙O于C,∠B=30°,則劣弧的長是()A.π B. C.π D.π9.如圖,⊙O中,弦BC與半徑OA相交于點D,連接AB,OC,若∠A=60°,∠ADC=85°,則∠C的度數(shù)是()A.25° B.27.5° C.30° D.35°10.春季是傳染病多發(fā)的季節(jié),積極預防傳染病是學校高度重視的一項工作,為此,某校對學生宿舍采取噴灑藥物進行消毒.在對某宿舍進行消毒的過程中,先經(jīng)過的集中藥物噴灑,再封閉宿舍,然后打開門窗進行通風,室內(nèi)每立方米空氣中含藥量與藥物在空氣中的持續(xù)時間之間的函數(shù)關系,在打開門窗通風前分別滿足兩個一次函數(shù),在通風后又成反比例,如圖所示.下面四個選項中錯誤的是()A.經(jīng)過集中噴灑藥物,室內(nèi)空氣中的含藥量最高達到B.室內(nèi)空氣中的含藥量不低于的持續(xù)時間達到了C.當室內(nèi)空氣中的含藥量不低于且持續(xù)時間不低于35分鐘,才能有效殺滅某種傳染病毒.此次消毒完全有效D.當室內(nèi)空氣中的含藥量低于時,對人體才是安全的,所以從室內(nèi)空氣中的含藥量達到開始,需經(jīng)過后,學生才能進入室內(nèi)11.若關于x的分式方程的解為正數(shù),則滿足條件的正整數(shù)m的值為()A.1,2,3 B.1,2 C.1,3 D.2,312.如圖,直線y=34x+3交x軸于A點,將一塊等腰直角三角形紙板的直角頂點置于原點O,另兩個頂點M、N恰落在直線y=3A.17 B.16 C.1二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,一下水管道橫截面為圓形,直徑為100cm,下雨前水面寬為60cm,一場大雨過后,水面寬為80cm,則水位上升______cm.14.一副直角三角板疊放如圖所示,現(xiàn)將含45°角的三角板固定不動,把含30°角的三角板繞直角頂點沿逆時針方向勻速旋轉一周,第一秒旋轉5°,第二秒旋轉10°,第三秒旋轉5°,第四秒旋轉10°,…按此規(guī)律,當兩塊三角板的斜邊平行時,則三角板旋轉運動的時間為_____.15.已知x=2是關于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一個根,則k的值為_____.16.有一個計算程序,每次運算都是把一個數(shù)先乘以2,再除以它與1的和,多次重復進行這種運算的過程如下:則,y2=_____,第n次的運算結果yn=_____.(用含字母x和n的代數(shù)式表示).17.如圖,在矩形ABCD中,對角線AC、BD相交于點O,點E、F分別是AO、AD的中點,若AB=6cm,BC=8cm,則EF=_____cm.18.如圖,在Rt△ABC中,∠ACB=90°,AB的垂直平分線DE交AC于E,交BC的延長線于F,若∠F=30°,DE=1,則BE的長是.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,點E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF與DE交于點G,求證:GE=GF.20.(6分)如圖,將連續(xù)的奇數(shù)1,3,5,7…按如圖中的方式排成一個數(shù),用一個十字框框住5個數(shù),這樣框出的任意5個數(shù)中,四個分支上的數(shù)分別用a,b,c,d表示,如圖所示.(1)計算:若十字框的中間數(shù)為17,則a+b+c+d=______.(2)發(fā)現(xiàn):移動十字框,比較a+b+c+d與中間的數(shù).猜想:十字框中a、b、c、d的和是中間的數(shù)的______;(3)驗證:設中間的數(shù)為x,寫出a、b、c、d的和,驗證猜想的正確性;(4)應用:設M=a+b+c+d+x,判斷M的值能否等于2020,請說明理由.21.(6分)在中,,是的角平分線,交于點.(1)求的長;(2)求的長.22.(8分)讀詩詞解題:(通過列方程式,算出周瑜去世時的年齡)大江東去浪淘盡,千古風流數(shù)人物;而立之年督東吳,早逝英年兩位數(shù);十位恰小個位三,個位平方與壽符;哪位學子算得快,多少年華屬周瑜?23.(8分)某網(wǎng)店銷售某款童裝,每件售價60元,每星期可賣300件,為了促銷,該網(wǎng)店決定降價銷售.市場調(diào)查反映:每降價1元,每星期可多賣30件.已知該款童裝每件成本價40元,設該款童裝每件售價x元,每星期的銷售量為y件.(1)求y與x之間的函數(shù)關系式;(2)當每件售價定為多少元時,每星期的銷售利潤最大,最大利潤是多少元?(3)若該網(wǎng)店每星期想要獲得不低于6480元的利潤,每星期至少要銷售該款童裝多少件?24.(10分)從2017年1月1日起,我國駕駛證考試正式實施新的駕考培訓模式,新規(guī)定C2駕駛證的培訓學時為40學時,駕校的學費標準分不同時段,普通時段a元/學時,高峰時段和節(jié)假日時段都為b元/學時.(1)小明和小華都在此駕校參加C2駕駛證的培訓,下表是小明和小華的培訓結算表(培訓學時均為40),請你根據(jù)提供的信息,計算出a,b的值.學員培訓時段培訓學時培訓總費用小明普通時段206000元高峰時段5節(jié)假日時段15小華普通時段305400元高峰時段2節(jié)假日時段8(2)小陳報名參加了C2駕駛證的培訓,并且計劃學夠全部基本學時,但為了不耽誤工作,普通時段的培訓學時不會超過其他兩個時段總學時的,若小陳普通時段培訓了x學時,培訓總費用為y元①求y與x之間的函數(shù)關系式,并確定自變量x的取值范圍;②小陳如何選擇培訓時段,才能使得本次培訓的總費用最低?25.(10分)如圖①是一副創(chuàng)意卡通圓規(guī),圖②是其平面示意圖,OA是支撐臂,OB是旋轉臂.使用時,以點A為支撐點,鉛筆芯端點B可繞點A旋轉作出圓.已知OA=OB=10cm.(1)當∠AOB=18°時,求所作圓的半徑(結果精確到0.01cm);(2)保持∠AOB=18°不變,在旋轉臂OB末端的鉛筆芯折斷了一截的情況下,作出的圓與(1)中所作圓的大小相等,求鉛筆芯折斷部分的長度(結果精確到0.01cm,參考數(shù)據(jù):sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科學計算器).26.(12分)如圖,點A(m,m+1),B(m+1,2m-3)都在反比例函數(shù)的圖象上.(1)求m,k的值;(2)如果M為x軸上一點,N為y軸上一點,以點A,B,M,N為頂點的四邊形是平行四邊形,試求直線MN的函數(shù)表達式.27.(12分)2013年我國多地出現(xiàn)霧霾天氣,某企業(yè)抓住商機準備生產(chǎn)空氣凈化設備,該企業(yè)決定從以下兩個投資方案中選擇一個進行投資生產(chǎn),方案一:生產(chǎn)甲產(chǎn)品,每件產(chǎn)品成本為a元(a為常數(shù),且40<a<100),每件產(chǎn)品銷售價為120元,每年最多可生產(chǎn)125萬件;方案二:生產(chǎn)乙產(chǎn)品,每件產(chǎn)品成本價為80元,每件產(chǎn)品銷售價為180元,每年可生產(chǎn)120萬件,另外,年銷售x萬件乙產(chǎn)品時需上交0.5x2萬元的特別關稅,在不考慮其它因素的情況下:(1)分別寫出該企業(yè)兩個投資方案的年利潤y1(萬元)、y2(萬元)與相應生產(chǎn)件數(shù)x(萬件)(x為正整數(shù))之間的函數(shù)關系式,并指出自變量的取值范圍;(2)分別求出這兩個投資方案的最大年利潤;(3)如果你是企業(yè)決策者,為了獲得最大收益,你會選擇哪個投資方案?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
根據(jù)平行線的性質(zhì)得到根據(jù)BE平分∠ABD,即可求出∠1的度數(shù).【詳解】解:∵BD∥AC,∴∵BE平分∠ABD,∴故選B.【點睛】本題考查角平分線的性質(zhì)和平行線的性質(zhì),熟記它們的性質(zhì)是解題的關鍵.2、D【解析】
因客戶的要求每天的工作效率應該為:(48+x)件,所用的時間為:,根據(jù)“因客戶要求提前5天交貨”,用原有完成時間減去提前完成時間,可以列出方程:.故選D.3、D【解析】【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根據(jù)tanα=,即可解決問題.【詳解】在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB=,故選D.【點睛】本題考查解直角三角形的應用﹣仰角俯角問題,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.4、B【解析】
原式利用減法法則變形,計算即可求出值.【詳解】,故選:B.【點睛】本題主要考查了有理數(shù)的加減,熟練掌握有理數(shù)加減的運算法則是解決本題的關鍵.5、C【解析】
由拋物線的開口方向判斷a與1的關系,由拋物線與y軸的交點判斷c與1的關系,然后根據(jù)拋物線與x軸交點及x=1時二次函數(shù)的值的情況進行推理,進而對所得結論進行判斷.【詳解】解:①根據(jù)圖示知,該函數(shù)圖象的開口向上,∴a>1;該函數(shù)圖象交于y軸的負半軸,∴c<1;故①正確;②對稱軸∴∴b<1;故②正確;③根據(jù)圖示知,二次函數(shù)與x軸有兩個交點,所以,即,故③錯誤④故本選項正確.正確的有3項故選C.【點睛】本題考查二次函數(shù)的圖象與系數(shù)的關系.二次項系數(shù)決定了開口方向,一次項系數(shù)和二次項系數(shù)共同決定了對稱軸的位置,常數(shù)項決定了與軸的交點位置.6、B【解析】
找到從正面看所得到的圖形即可,注意所有從正面看到的棱都應表現(xiàn)在主視圖中.【詳解】解:從正面看該幾何體,有3列正方形,分別有:2個,2個,2個,如圖.故選B.【點睛】本題考查了三視圖的知識,主視圖是從物體的正面看到的視圖,屬于基礎題型.7、C【解析】分析:本題重點注意各個頂點同時在兩條邊上,計算點的個數(shù)時,不要把頂點重復計算了.詳解:此題中要計算點的個數(shù),可以類似周長的計算方法進行,但應注意各個頂點重復了一次.如當n=2時,共有S2=4×2﹣4=4;當n=3時,共有S3=4×3﹣4,…,依此類推,即Sn=4n﹣4,當n=2018時,S2018=4×2018﹣4=1.故選C.點睛:本題考查了圖形的變化類問題,關鍵是通過歸納與總結,得到其中的規(guī)律.8、C【解析】
由切線的性質(zhì)定理得出∠OAB=90°,進而求出∠AOB=60°,再利用弧長公式求出即可.【詳解】∵AB是⊙O的切線,∴∠OAB=90°,∵半徑OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧AC?的長是:=,故選:C.【點睛】本題考查了切線的性質(zhì),圓周角定理,弧長的計算,解題的關鍵是先求出角度再用弧長公式進行計算.9、D【解析】分析:直接利用三角形外角的性質(zhì)以及鄰補角的關系得出∠B以及∠ODC度數(shù),再利用圓周角定理以及三角形內(nèi)角和定理得出答案.詳解:∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°故選D.點睛:此題主要考查了圓周角定理以及三角形內(nèi)角和定理等知識,正確得出∠AOC度數(shù)是解題關鍵.10、C【解析】
利用圖中信息一一判斷即可.【詳解】解:A、正確.不符合題意.B、由題意x=4時,y=8,∴室內(nèi)空氣中的含藥量不低于8mg/m3的持續(xù)時間達到了11min,正確,不符合題意;C、y=5時,x=2.5或24,24-2.5=21.5<35,故本選項錯誤,符合題意;D、正確.不符合題意,故選C.【點睛】本題考查反比例函數(shù)的應用、一次函數(shù)的應用等知識,解題的關鍵是讀懂圖象信息,屬于中考??碱}型.11、C【解析】試題分析:解分式方程得:等式的兩邊都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,且x=4﹣m≠2,已知關于x的分式方的解為正數(shù),得m=1,m=3,故選C.考點:分式方程的解.12、A【解析】
過O作OC⊥AB于C,過N作ND⊥OA于D,設N的坐標是(x,34x+3),得出DN=34x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面積公式得出AO×OB=AB×OC,代入求出OC,根據(jù)sin45°=OCON,求出ON,在Rt△NDO中,由勾股定理得出(34x+3)2+(-x)2=(122【詳解】過O作OC⊥AB于C,過N作ND⊥OA于D,∵N在直線y=34∴設N的坐標是(x,34則DN=34y=34當x=0時,y=3,當y=0時,x=-4,∴A(-4,0),B(0,3),即OA=4,OB=3,在△AOB中,由勾股定理得:AB=5,∵在△AOB中,由三角形的面積公式得:AO×OB=AB×OC,∴3×4=5OC,OC=125∵在Rt△NOM中,OM=ON,∠MON=90°,∴∠MNO=45°,∴sin45°=OCON∴ON=122在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,即(34x+3)2+(-x)2=(1225解得:x1=-8425,x2=12∵N在第二象限,∴x只能是-842534x+3=12即ND=1225,OD=84tan∠AON=NDOD故選A.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征,勾股定理,三角形的面積,解直角三角形等知識點的運用,主要考查學生運用這些性質(zhì)進行計算的能力,題目比較典型,綜合性比較強.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、10或1【解析】
分水位在圓心下以及圓心上兩種情況,畫出符合題意的圖形進行求解即可得.【詳解】如圖,作半徑于C,連接OB,由垂徑定理得:=AB=×60=30cm,在中,,當水位上升到圓心以下時
水面寬80cm時,則,水面上升的高度為:;當水位上升到圓心以上時,水面上升的高度為:,綜上可得,水面上升的高度為30cm或1cm,故答案為:10或1.【點睛】本題考查了垂徑定理的應用,掌握垂徑定理、靈活運用分類討論的思想是解題的關鍵.14、14s或38s.【解析】試題解析:分兩種情況進行討論:如圖:旋轉的度數(shù)為:每兩秒旋轉如圖:旋轉的度數(shù)為:每兩秒旋轉故答案為14s或38s.15、﹣1【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解關于k的方程,然后根據(jù)一元二次方程的定義確定k的值即可.【詳解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+1k=0,解得k1=0,k2=﹣1,因為k≠0,所以k的值為﹣1.故答案為:﹣1.【點睛】本題考查了一元二次方程的定義以及一元二次方程的解,能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.16、【解析】
根據(jù)題目中的程序可以分別計算出y2和yn,從而可以解答本題.【詳解】∵y1=,∴y2===,y3=,……yn=.故答案為:.【點睛】本題考查了分式的混合運算,解答本題的關鍵是明確題意,用代數(shù)式表示出相應的y2和yn.17、2.1【解析】
根據(jù)勾股定理求出AC,根據(jù)矩形性質(zhì)得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根據(jù)三角形中位線求出即可.【詳解】∵四邊形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:BD=AC==10(cm),∴DO=1cm,∵點E、F分別是AO、AD的中點,∴EF=OD=2.1cm,故答案為2.1.【點評】本題考查了勾股定理,矩形性質(zhì),三角形中位線的應用,熟練掌握相關性質(zhì)及定理是解題的關鍵.18、2【解析】∵∠ACB=90°,F(xiàn)D⊥AB,∴∠ACB=∠FDB=90°?!摺螰=30°,∴∠A=∠F=30°(同角的余角相等)。又AB的垂直平分線DE交AC于E,∴∠EBA=∠A=30°。∴Rt△DBE中,BE=2DE=2。三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、證明見解析.【解析】【分析】求出BF=CE,根據(jù)SAS推出△ABF≌△DCE,得對應角相等,由等腰三角形的判定可得結論.【詳解】∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中,∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.【點睛】本題考查了全等三角形的判定與性質(zhì),等腰三角形的判定,熟練掌握三角形全等的判定方法是解題的關鍵.20、(1)68
;(2)4倍;(3)4x,猜想正確,見解析;(4)M的值不能等于1,見解析.【解析】
(1)直接相加即得到答案;(2)根據(jù)(1)猜想a+b+c+d=4x;(3)用x表示a、b、c、d,相加后即等于4x;(4)得到方程5x=1,求出的x不符合數(shù)表里數(shù)的特征,故不能等于1.【詳解】(1)5+15+19+29=68,故答案為68;(2)根據(jù)(1)猜想a+b+c+d=4x,答案為:4倍;(3)a=x-12,b=x-2,c=x+2,d=x+12,∴a+b+c+d=x-12+x-2+x+2+x+12=4x,∴猜想正確;(4)M=a+b+c+d+x=4x+x=5x,若M=5x=1,解得:x=404,但整個數(shù)表所有的數(shù)都為奇數(shù),故不成立,∴M的值不能等于1.【點睛】本題考查了一元一次方程的應用.當解得方程的解后,要觀察是否滿足題目和實際要求再進行取舍.21、(1)10;(2)的長為【解析】
(1)利用勾股定理求解;(2)過點作于,利用角平分線的性質(zhì)得到CD=DE,然后根據(jù)HL定理證明,設,根據(jù)勾股定理列方程求解.【詳解】解:(1)在中,;(2)過點作于,平分,在和中,.設,則在中,解得即的長為【點睛】本題考查了角平分線上的點到角的兩邊距離相等的性質(zhì),勾股定理,全等三角形的判定與性質(zhì),難點在于(2)多次利用勾股定理.22、周瑜去世的年齡為16歲.【解析】
設周瑜逝世時的年齡的個位數(shù)字為x,則十位數(shù)字為x﹣1.根據(jù)題意建立方程求出其值就可以求出其結論.【詳解】設周瑜逝世時的年齡的個位數(shù)字為x,則十位數(shù)字為x﹣1.由題意得;10(x﹣1)+x=x2,解得:x1=5,x2=6當x=5時,周瑜的年齡25歲,非而立之年,不合題意,舍去;當x=6時,周瑜年齡為16歲,完全符合題意.答:周瑜去世的年齡為16歲.【點睛】本題是一道數(shù)字問題的運用題,考查了列一元二次方程解實際問題的運用,在解答中理解而立之年是一個人10歲的年齡是關鍵.23、(1)y=﹣30x+1;(2)每件售價定為55元時,每星期的銷售利潤最大,最大利潤2元;(3)該網(wǎng)店每星期想要獲得不低于6480元的利潤,每星期至少要銷售該款童裝360件.【解析】
(1)每星期的銷售量等于原來的銷售量加上因降價而多銷售的銷售量,代入即可求解函數(shù)關系式;(2)根據(jù)利潤=銷售量(銷售單價-成本),建立二次函數(shù),用配方法求得最大值.(3)根據(jù)題意可列不等式,再取等將其轉化為一元二次方程并求解,根據(jù)每星期的銷售利潤所在拋物線開口向下求出滿足條件的x的取值范圍,再根據(jù)(1)中一元一次方程求得滿足條件的x的取值范圍內(nèi)y的最小值即可.【詳解】(1)y=300+30(60﹣x)=﹣30x+1.(2)設每星期利潤為W元,W=(x﹣40)(﹣30x+1)=﹣30(x﹣55)2+2.∴x=55時,W最大值=2.∴每件售價定為55元時,每星期的銷售利潤最大,最大利潤2元.(3)由題意(x﹣40)(﹣30x+1)≥6480,解得52≤x≤58,當x=52時,銷售300+30×8=540,當x=58時,銷售300+30×2=360,∴該網(wǎng)店每星期想要獲得不低于6480元的利潤,每星期至少要銷售該款童裝360件.【點睛】本題主要考查一次函數(shù)的應用和二次函數(shù)的應用,注意綜合運用所學知識解題.24、(1)120,180;(2)①y=-60x+7200,0≤x≤;②x=時,y有最小值,此時y最小=-60×+7200=6400(元).【解析】
(1)根據(jù)小明和小華的培訓結算表列出關于a、b的二元一次方程組,解方程即可求解;(2)①根據(jù)培訓總費用=普通時段培訓費用+高峰時段和節(jié)假日時段培訓費用列出y與x之間的函數(shù)關系式,進而確定自變量x的取值范圍;②根據(jù)一次函數(shù)的性質(zhì)結合自變量的取值范圍即可求解.【詳解】(1)由題意,得,解得,故a,b的值分別是120,180;(2)①由題意,得y=120x+180(40-x),化簡得y=-60x+7200,∵普通時段的培訓學時不會超過其他兩個時段總學時的,∴x≤(40-x),解得x≤,又x≥0,∴0≤x≤;②∵y=-60x+7200,k=-60<0,∴y隨x的增大而減小,∴x取最大值時,y有最小值,∵0≤x≤;∴x=時,y有最小值,此時y最小=-60×+7200=6400(元).【點睛】本題考查了一次函數(shù)的應用,二元一次方程組的應用,理解題意得出數(shù)量關系是解題的關鍵.25、(1)3.13cm(2)鉛筆芯折斷部分的長度約是0.98cm【解析】試題分析:(1)根據(jù)題意作輔助線OC⊥AB于點C,根據(jù)OA=OB=10cm,∠OCB=90°,∠AOB=18°,可以求得∠BOC的度數(shù),從而可以求得AB的長;(2)由題意可知,作出的圓與(1)中所作圓的大小相等,則AE=AB,然后作出相應的輔助線,畫出圖形,從而可以求得BE的長,本題得以解決.試題解析:(1)作OC⊥AB于點C,如右圖2所示,由題意可得,OA=OB=10cm,∠OCB=90°,∠AOB=18°,∴∠BOC=9°,∴AB=2BC=2OB?sin9°≈2×10×0.1564≈3.13cm,即所作圓的半徑約為3.13cm;(2)作AD⊥OB于點D,作AE=AB,如下圖3所示,∵保持∠AOB=18°不變,在旋轉臂OB末端的鉛筆芯折斷了一截的情況下,作出的圓與(1)中所作圓的大小相等,∴折斷的部分為BE,∵∠AOB=18°,OA=OB,∠ODA=90°,∴∠OAB=81°,∠OAD=72°,∴∠BAD=9°,∴BE=2BD=2AB?sin9°≈2×3.13×0.1564≈0.98cm,即鉛筆芯折斷部分的長度是0.98cm.考點:解直角三角形的應用;探究型.26、(1)m=3,k=12;(2)或【解析】【分析】(1)把A(m,m+1),B(m+3,m-1)代入反比例函數(shù)y=,得k=m(m+1)=(m+3)(m-1),再求解;(2)用待定系數(shù)法求一次函數(shù)解析式;(3)過點A作AM⊥x軸于點M,過點
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學年高中化學上學期第三周 氧化還原反應說課稿
- 7 我們有新玩法 說課稿-2023-2024學年道德與法治二年級下冊統(tǒng)編版
- 2025二手車購買合同書
- 2025合同的履行、變更、轉讓、撤銷和終止
- 14 《窮人》說課稿-2024-2025學年六年級語文上冊統(tǒng)編版001
- 買方購車合同范本
- 公路修建合同范本
- 鋪設碎石土路面施工方案
- 輕鋼吊頂施工方案
- 路燈池施工方案
- 護理工作中的人文關懷
- 完整液壓系統(tǒng)課件
- 班級建設方案中等職業(yè)學校班主任能力大賽
- T-TJSG 001-2024 天津市社會組織社會工作專業(yè)人員薪酬指導方案
- 芯片設計基礎知識題庫100道及答案(完整版)
- 00015-英語二自學教程-unit2
- 人教版九上化學第二單元課題2氧氣課件
- 三年級上冊乘法豎式計算200道及答案
- 區(qū)塊鏈技術指南
- 中頻治療儀的使用流程
- 旅游裝備行業(yè)分析
評論
0/150
提交評論