高三高考教師專題講義導(dǎo)數(shù)_第1頁
高三高考教師專題講義導(dǎo)數(shù)_第2頁
高三高考教師專題講義導(dǎo)數(shù)_第3頁
高三高考教師專題講義導(dǎo)數(shù)_第4頁
高三高考教師專題講義導(dǎo)數(shù)_第5頁
已閱讀5頁,還剩239頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題一導(dǎo)數(shù)的概念與運(yùn) 專題二導(dǎo)數(shù)的幾何意 專題三導(dǎo)數(shù)的應(yīng) 四導(dǎo)數(shù)與定積

A類---綜觀2008—2014年各地的高考數(shù)學(xué)試卷,幾乎卷卷都有1至2道時(shí)比例.這類試題有很強(qiáng)的思考性和性,能有效地考查學(xué)生的思維水A低B中C高√△ycyxyx2yx3y1y xx數(shù)√△√√f(axb)的導(dǎo)數(shù)√A低B中C高√△ycyxyx2yx3y1y xx數(shù)√√√ yf(xxx0處的導(dǎo)數(shù),記作y ,即f/ )

f(x0x)f(x0x

2、導(dǎo)函數(shù)的定義yf(x在開區(qū)間(a,b內(nèi)的每點(diǎn)處都有導(dǎo)數(shù),此時(shí)對(duì)于每一個(gè)x(a,b,都對(duì)應(yīng)著一個(gè)確定的導(dǎo)數(shù)fx,從而構(gòu)成了一個(gè)新的函數(shù)f/(x),稱這個(gè)函數(shù)f/(x)為函數(shù)y f(x)在開區(qū)注:1.如果函數(shù)yf(x在開區(qū)間(a,byf(x在開區(qū)間(a,b

yf(xxfx00000求導(dǎo)函數(shù)時(shí),只需將求導(dǎo)數(shù)式中的xx就可,即fx0f(xx)fyf(x求函數(shù)的改變量yf(xxf(x)

f(xx)f。 x00【例1f′(x)=2,limfx0kfx0)0 2】yx2yyx2xx=2解:(1)y/2x1(2)51.C(xn)(ex)(ax)axln(lnx)x

x)1loge

xln(2)(uv)uvu(3)(uv

uvfg(x)f(g)115(3)5

55y

和y (1)y(x12)12x121(2)y(x4)(4)x414x54 3 y(5x3)(x5)3x51 x5 55(1)yx43x25x6(2)yxx(1)y(x43x25x(x4)3(x2)5x(6)4x36xx1(2)yx1

2(x2(x1)(x1) (x (x

x1

y

x

(x1)

(x (x1)2 3(1)f(x)(3x2x1)(2x3)f(x),f(1)(2)f(x)x32x2x5f(x0x(3)f(x)(2xa)nfy(1cos2x)2y(1)f'(x)18x222x5,f'(1)11(3)f'(x)2n(2x(4)f'(x)2(sin4xf(x)ln(1x)xkx2(k2f(x)

xf(x)lnxa(xxf(x)

2x(x1yf(x)(x2axf(x)(1axf'(x) 11 2x(x1)(x2a)x22xf(x)

(1

(1 f'(x)1a(x1)a(x (x 2(x1)2(2xb)i2(x 2x2b 2[x(bf(x)2f'(x)1e12

(x (x (xf'(x)(2xa)ex(x2axa)exx2(a2)x2af'(x)(a)ex(1a)

(x2axa (1)y3x4(2)y1(3)y5x24x (4)y5x23xy3x (6)y2x33x25x(7)f(x)(2x)(3x)(8)f(x)(x2)2(9)f(x)(2x31)(3x2 (10)y3(2x1)20(1)yx2,x2 (2)y0

13

,x00(3)y(x2)2,x0 (4)yx2x,x0(5)yx21在-1,0,1yx22x在-2,0,2y(2x21)2的導(dǎo)數(shù)是((A)16x34x2(B)4x38x(C)16x38x(D)16x3f(xx13f(x的解析式可以為((A)f(x)(x1)23(x1)(B)f(x)2(x(C)f(x)2(x1)2(D)f(x)xyx(1 B.yxeC.yln(1-x2)D.yx2 y2y等于 B. f(x)ax33x22,若f'(1)4,則a的值等于 A.

B.

C.

D.若f(x)x3,f'(x)3,則 x

的導(dǎo)數(shù)是f( 已知函數(shù)f(x)在x1處的導(dǎo)數(shù)為3,則f(x)的解析式可 f(x)(x1)23(x B.f(x)2(xC.f(x)2(x D.f(x)x設(shè)函數(shù)f(x)x2(x1),則f(1)的值為 函數(shù)f(x)lnx的導(dǎo)數(shù)是f(x) x1ln

1ln

1ln

1ln 函數(shù)ysinx的導(dǎo)數(shù) xf f fxf f ,f'(5)

yx2

y1

xx0與與若f(x)sincosx,則f'()等于 A. B. C.sin D. A.f B.f C.f D.f設(shè)f(x)(2xa)2,f(2)20,則a等于 已知函數(shù)y=f(x)在區(qū)間(abx0ablimf(x0h)f(x0h) A.f C.-2f′(x0)f(xh)f(x若f'(x)3,則 0

9D.1.已知fxx2,則f3等于 B.fx0的導(dǎo)數(shù)是

C.)

y3x2的導(dǎo)數(shù)是 B.13

C. D.2曲線yxn在x2處的導(dǎo)數(shù)是12,則n等于 若fx3x,則f1等于

C. 函數(shù)y42x3x22的導(dǎo)數(shù)是 82x3x2C.82x3x26x

21D.42x3x26xy12x2x1y3x2xy

x13x3

yx2 y(xyxlnyxnlnyxxyxsinxcos專題二ABC√△ABC√f/(x)是曲線yf(x)上點(diǎn)( ,f

yf(xx0yf(xx0f(x0yf(x0fx0xx0用字母d表示。3】s410t5t2,則該質(zhì)點(diǎn)在t4時(shí)的瞬時(shí)速度為()(A)60(B) (C) 這類題型只需要三個(gè)方程:f'(x)k,yf(x)(,x,y)帶入 ,注 22xP處的切線方程.x

在2]y2x23P(1,5和Q(2,9處的切線方程。易錯(cuò)點(diǎn):直接將PQ看作曲線上的點(diǎn)用導(dǎo)數(shù)求解。的函數(shù)值;點(diǎn)Q【解析】:y2x23,y4x.

x1設(shè)過點(diǎn)Q的切線的切點(diǎn)為T(x0,y0),則切線的斜率為4x0, y, x00x0 2x2 4x0x0

8x060.x01,3即切線QT412,從而過點(diǎn)Qy4x1,y12x y2xx323x2)(xx A(1,1),∴12xx323x2)(1x1 1解得:x1或x ,當(dāng)x1時(shí),切點(diǎn)為(1,1,切線方程為0xy21

當(dāng)x0 時(shí),切點(diǎn)為2

)5x4y1 4].y1yx2xx5(有極大值9.若斜率為5yf(x 3x3131(m3+0—0+f 3 5x+y-1=0135x+27y-23=0.

=-5(x+ [例1].(Ⅰ卷理7)設(shè)曲線yaxy10垂直,則a

xx

3212

C.2

D.() 2yx2M(1,1)的切線的傾斜角是 3

5為,則角的取值范圍 [2,3 [2,3A、[0, 3

B、[02

C、(,

D、[, 2xy60平行,則a12

C.2

D., 4為 B. C. D.1 2

2點(diǎn)P的橫坐標(biāo)x0y2x02tan(P處切線的傾斜角4∴02x21,∴x[1, 則實(shí)數(shù)b【答案】bln2

xbylnx(x0)2y111 1x2,故切點(diǎn)為(2,ln2),代入直線方程,得ln2 2b,所2bln21x[例1](Ⅱ卷理14)設(shè)曲線yeax在點(diǎn)(01)處的切線與直線x2y10垂直,則ayaeax,∴切線的斜率k

a,所以由a

12af(xx2axbg(x)x2cxdf(2x1)4g(x,且f(x)g(x,f(5)30g(4).[練習(xí)]yx3ax2bxcP(1,2)P點(diǎn)的切線與圖象僅P點(diǎn)一個(gè)公共點(diǎn),又知切線斜率的最小值為2,求f(x)的解析 拋物線y=x上點(diǎn)M(,)的切線傾斜角是 A. 函數(shù)y(x1)2(x1)在x1處的導(dǎo)數(shù)等于 4 2B.C.D.1232x 1 2

C.2

D.5.(Ⅰ卷文4)曲線方程為yx32x4,則其在點(diǎn))處的切A. 6.(Ⅱ卷文7)設(shè)曲線yax2在點(diǎn)(1,a)處的切線與直2xy60平行,則a 1 2

C.2

D.

(40(24 A(3,3)B(1,3)C(6,-12) D(2,4)f(x1x32x1f(1)310.(8)y1xbylnx(x0)2數(shù)b(Ⅱ卷理14)設(shè)曲x2y10垂直,則a

yeax01處的切線與直線的坐標(biāo)分別為(),則f(f(0))limf(1xf(1)(用數(shù)字作答 31-的共切線方程是.2y21x2y1x32 yax2bxcP(1,1),且在點(diǎn)Q(2,1) 4 B. C. D.1 2 2 7)yx132處的切線與直線xaxy10垂直,則a C.

D. 4)yx32x4,則其在點(diǎn)) (Ⅱ卷文7)設(shè)曲線yax2在點(diǎn)(1,a)處的切線與直2xy60平行,則a 12

C.2

D.

x處的切線與直線axy10垂直,則

x

B.2

C.2

D.-6(云南省玉溪一中2013屆高三上學(xué)期期中考試?yán)恚﹜x23lnx B. C. D.27(09屆蒼山·文科yx4的一條切線lx4y80垂直,則l的方程為().A.4xy3 B.x4y5C.4xy3 D.x4y38(10二文7)切線若曲線yx2axb在點(diǎn)(0,b)處的切線方程xy10,則(A)a1,b (B)a1,b(C)a1,b (D)a1,b9、 二理8)曲線ye2x1在點(diǎn)0,2處的切線與直線y0yx圍成的三角形的面積為13

2

3

10、過點(diǎn)A(1,1)與曲線y2xx3相切的切線的條數(shù)是 11、(2013?遼寧二模)點(diǎn)p0(x0,y0)是曲線y3lnxxk(kR)圖象上一個(gè)定點(diǎn)過點(diǎn)p0的切線方程為4xy10則實(shí)數(shù)k的值 31-的共切線方程是.2ABC√√√fx在abfx在ab的任意子區(qū)間內(nèi)都不恒等于0,則:1yx23x5在哪個(gè)區(qū)間內(nèi)是增函數(shù),在哪個(gè)區(qū)間內(nèi)答案:函數(shù)在區(qū)間3內(nèi)是增函數(shù),在區(qū)間3 2 2fxx33x2x1答案:?jiǎn)卧鰠^(qū)間為

3 32

,單減區(qū)間為323,32

、 3fxx33x23x2的單調(diào)區(qū)間.答案:?jiǎn)卧鰠^(qū)間為.4y1在區(qū)間1x1 x10 xsinx0.1、y3x2x4在哪個(gè)區(qū)間內(nèi)是增函數(shù),在哪個(gè)區(qū)間內(nèi)是減函2、fx1x33x2x133、fx1x33x29x234、y22x1xfxfx0(fxfx0)fx在x0處取極大(小)yfx0(yfx0)x0稱為函數(shù)fx的一個(gè)極大(小)值點(diǎn).2yfx在abfxyfx極值的步驟:第一步求導(dǎo)數(shù)fx;第三步在每個(gè)根x0fx的符號(hào)如何變則fx0是極小值.3yfx在ab連續(xù),在abfxyfx在ab的最大(?。┲档牟襟E:fx在開區(qū)間ab內(nèi)所有使fx0的點(diǎn);fxfx0的所有點(diǎn)(3f323f3132fx1x39x54,933fxx39x5,求函數(shù)在區(qū)間213 f2 4fxx3,求函數(shù)在區(qū)間3,1上的最大值和最小3f11136y2x24x1故x1時(shí),最小值1,無最大值.1、fxx312x52、fxx312x5,求函數(shù)在區(qū)間3,5上的最大值和最3、fxx312x5,求函數(shù)在區(qū)間2,0上的最大值和最4、fxx33x23x2,求函數(shù)在區(qū)間3,1上的最大值6、y2x24x1在經(jīng)濟(jì)生活中,人們經(jīng)常遇到最優(yōu)化問題.生產(chǎn)效率最高,或?yàn)槭褂昧ψ钍?、用料最少、消耗最省等等,需要尋求?.第二步利用導(dǎo)數(shù)求最值.1現(xiàn)有一塊邊長為1的正方形紙板,如果從紙板的四個(gè)角各截去一

6要將直徑為1

3

3相距50km.兩廠要在此岸邊合建一個(gè)供水站C.從供水站到甲廠和乙廠的水管費(fèi)用分別為每千米3a元和5a元.問供水站C建在岸邊何處才能使水1、把長度為8的鐵絲分成兩段,各圍成一個(gè)正方形,問怎樣分法,才能使2、做一個(gè)容積為216mL的圓柱形封閉容器,高與底面半徑為何值時(shí),所3、等腰三角形的周長為2p,它圍繞底邊旋轉(zhuǎn)一周成一幾何體,問三角形1、y3x24x1在哪個(gè)區(qū)間內(nèi)是增函數(shù),在哪個(gè)區(qū)間內(nèi)是減2、fx2x33x2x133、fx2x33x29x2 4、ylog22x1在區(qū)間0,5、y2xsinxcosx6、fx2x324x57fx2x324x5,求函數(shù)在區(qū)間3,4上的最大值和最8fx2x324x5,求函數(shù)在區(qū)間1,0上的最大值和最9、fxx33x23x2,求函數(shù)在區(qū)間2,3上的最大11、yax2bxca012、將長為72cm的鐵絲截成12段,搭成一個(gè)正四棱柱的模型,以此為骨

ABC√√ f(x)dx=limf(if(x在[a,b上有界(通常指有最大值和最小值),在a與baxxx x a,任意插入n1個(gè)分點(diǎn) 分成n個(gè)小區(qū)間xi1,xii1, ,n,記每個(gè)小區(qū)間的長度為xix i1, xi1,xi fin i 上任取一點(diǎn)ζi,作函數(shù) n間長度

i

fixi1,

sfixii記λ=max{xi;i1, ,n},如果當(dāng)λ->0時(shí),和s總是趨向于一個(gè)i值,則該定值便稱為函數(shù)f(x

a,

bf上的定積分,記為 ,即f(x)dx f(i 0其中

f(i)nn

f

a,

bafx)dx(fx)0)yf(xx軸,xaxb所圍成曲邊梯bbafx)dx(fx)0)yf(xx軸,xaxb所圍成曲邊梯b若函數(shù)f(x)a,bF(x),即 , 在 上可積,bfxdxFbFa.這稱 ,它也常寫 ①akf(x)dx=kaf ②a[f1(x)f2(x)]dx=af1(x)dxa

af(x)F(b)-F(a),其中’x)fxbbSafb①S

v(t)dtb②變力做功WaFb (1)3(4xx2)dx;(2)2(x1)5dx (3)2(xsinx)dx0

2cos2xdx2 x3 【解析】:(1)1(4xxdx2x3|1(2)因?yàn)閇1(x1)6x1)5,所以2(x1)5dx1(x1)6|216

(3)2(xsinx)dx cosx)|2 1cos 2cos2xdx2 dx 2 sin2x2

【2】y9x2yx7圍y9x2yx7x2x20xA

xB S 1(9x2x7)(2x

x3

x2)1

2y解方程組yx22axx1=0,x2=k+2a.k+2a≥0時(shí),Sk2a(kxx22ax)dxk2a[(k2a)xx20(k2a2

13

k)0)

(k.60k+2a<0Sk0

[(k2a)xx2]dx(k2a)36于是-(k+2a)3=27a3,解得k=-5aly【4】yx24yx2y=-1所圍成圖y由

x

y1x21x

(x2)]dx [22 22

2(13x2dx2x2dx20 1 【例5】一質(zhì)點(diǎn)以速度v(t)t2t6(m/s)解 50(2x4)dx5 1

1 0(x |3x|3x12|dx0 2(sinxcosx)dx的值為2 B. 401 3x2)dx0 B.3

(cosx1)dx09 x)dx9 9x2dx

2cos2xdx2(1)1(1x1)dx;(2)4(x3)dx2 (3)2cosxdx;(4)2x3dx y2xx=1所圍成的圖形的面積等于 B.3

C.3

33 3

3A. B.9 3

1 (x

0yx,yx1,及x軸圍成平面圖形的面積為A.11y01

2x1xC.21yy

xx0xylnxx1xex軸圍成圖形的面積是e 1lne1lnxdxeln

1lnxdxeee

lnC. e

D.e

lny2x2yxa a

a2x2dx

cosxdx2若是銳角ABC的一個(gè)內(nèi)角,且 2,則2yx3x22xx10y22xyx4ycosxx[0,3與坐標(biāo)軸圍成的面積2 C.2

A[0, B[0,2] D[0,1]1(x3tanxx2sinx)dx21(x3tanxx2sin0D.20(x3tanxx2sin D.20|xtanxxsinx|y2x3yx2所圍成的圖形面積是 B.3

3

3曲線yx2與直線yx2所圍成的圖形的面積等 y=cosxx02π之間的平面圖形的面積,利用定積分應(yīng)表達(dá)為.yx2x0,y1示 由曲線y x,yx2所圍成圖形的面積 22

4x2dxyx1x1,x3,y0 n ex (A)[0, (B)[,](C)(, (D)

上,4

4 1(14大綱卷理)yxex1在點(diǎn)(1,1)處切線的斜率等于 2(13大綱卷文)yx4ax21在-1,a28,則a A、9B、6C、-9D、-3(2013廣西百所高中高三年級(jí)第三屆聯(lián)考)

2x yx3x22xxx3 A.-2B.2C.124(濰坊市四縣一校)ylogax(1,0處的切線與直線x2y10垂直,則a5(煙臺(tái)市)Pf(xx4x上,曲線在點(diǎn)P處的切線平于直線3xy0,則點(diǎn)P的坐標(biāo)為。 文12)切線方程若曲線yax2lnx在點(diǎn)(1,a)處的切線平行于yx軸,則a=【例1(14 理10)切線方程曲線ye5x2在點(diǎn)(0,3)處的切線方。y5xy3x2x1y4x3 則其在點(diǎn)x1處的切線方程是()y2x B.y2x2C.yx D.yx1 xyln2ln20B.xln2y1

()xx02C.xy10D.xy13(2014二理8)設(shè)曲線yaxln(x1)在點(diǎn)(0,0)處的切線y2xA. B. C. D.f(x)x2(x2)1上點(diǎn)(1,f(1))處的切線 x2y1 B.2xy1 xy1 D.xy15(山東省煙臺(tái)市萊州一中20l3屆高三第二次質(zhì)量檢測(cè)(理))A.yx B.yx C.y2x D.y2x6(14江西理13)yexP2xy10,則點(diǎn)P的坐標(biāo) 7(14文11)切線方程曲線y5ex3在點(diǎn)(0,2)處的切線.8(1311)yx1(α∈R)在點(diǎn)(1,2)處的α=(點(diǎn)A,則點(diǎn)A的縱坐標(biāo)為()B. C. D.【例2(2013 海淀一模文)已知曲線f(x)lnx在點(diǎn)(x0,f(x0))處的切線經(jīng)過點(diǎn)(0,1),則x0的值為( 1 C. 1、曲線yex過點(diǎn)A(0,1)的切線斜率為 e2、過坐標(biāo)原點(diǎn),作曲線yex的切線,則切線方 A.exy B.eyx yexD.xey3、過曲線yx31上的點(diǎn)(1,2)的切線方程是 x y y2x y4x y2x4、函數(shù)yln(3x2)上過點(diǎn)(1,0)的切線方程 yx y3x yx y3x5、曲線y3x27過點(diǎn)P(5,11)的切線 3xy43xy43xy43xy46、已知曲線yx3上過點(diǎn)(2,8)的切線 當(dāng)a1fxP11和函數(shù)fx圖象上動(dòng)點(diǎn)Mm,fm,對(duì)任意 文20)設(shè)x1和x2是函數(shù)fxx5ax3bx求a和b(Ⅰ)3【2(1419)f(xxalnx3,其中aR yfx在點(diǎn)1f1y12求a4(Ⅱ)fx的單調(diào)遞增區(qū)間為5,fx的單調(diào)遞減區(qū)間為0,5,極小值為f5ln5,fx沒有極大值。1(1111)f(xRf1)2 B 2(0819)f(xx3ax29x1(a0).yf的斜率最小的切線與直線12xy6a的值3(0919)f(xx2bxcyf(x2,5g(xxaf(x)yg(x)有斜率為0的切線,求實(shí)數(shù)ax1yg(xyg(x 文20)設(shè)函數(shù)fxsinxcosxx1,0x2,求函數(shù)fx的單調(diào)區(qū)間與極值。

f

x1lnx1其中實(shí)數(shù)a1x若a2yfx在點(diǎn)0,f0fxx1fx確定af(xf(x)f(x)0f(x)f(x)的無定義點(diǎn))的橫坐標(biāo)和上面的各f(x的定義區(qū)間確定f(x在各個(gè)開區(qū)間內(nèi)的符號(hào),根據(jù)f(x)【1(1317)f(xxalnx(a當(dāng)a2yf(xA(1,f(1解:()xy20a0f(xa0f(xxa小值aalna,函數(shù)無極大值.x當(dāng)a1yf(x在點(diǎn)(2,f(2當(dāng)a1f(x2fxax2x1a,x

0

a0時(shí),函數(shù)f上單調(diào)遞減;函數(shù)f上單調(diào)遞增a1f(0,上單調(diào)遞減2x0,1時(shí),函數(shù)fx)上單調(diào)遞減;函數(shù)fx) 2 a11f11上單調(diào)遞減. 理18)已知函數(shù)數(shù)fxln(1x)x1kx2(k2(Ⅰ)當(dāng)k2y

'00在函數(shù)的定義域內(nèi)解不等式'x>0'x>0即函數(shù)f的單調(diào)遞增區(qū)間為1,1k(0, k 為1kk【例1(08年福建文21)已知函數(shù)的圖象過點(diǎn)(1, ,且函數(shù)gxf'(x)6xy(Ⅰ)求m、nyf(x(Ⅱ)若a0yf(xfx(1,6mn3,f(x)x3mx2nx2,得:f'(x)3x22mxng(x)3x22m6)xny2m602m3代入得nfx0x2x0由fx0得0x2,fx的單調(diào)遞減區(qū)間是2.令fx=0x0x2.x00,2(2,f0—0+fx↗↘↗當(dāng)0a1fx(a1,a1fO2a1fx(a1,a1當(dāng)1a3fx(a1,a1f2=-6,無極大值;a3時(shí),fx(a1,a1內(nèi)無極值.綜上得:當(dāng)0a1fx有極大值-2,無極小值,當(dāng)1a3fx有極小值-6,無極大值;當(dāng)-6a1或a3時(shí),f(x1(13)fxx2ax1在1是增函數(shù),則a A. B.1, C.0,

D.3, A. B. C.2, 3(12文理21)設(shè)0a1,集合A{xR|xB{xR|2x23(1a)x6a0},D Bf(x)2x33(1a)x26axD4(200918)fx)ax2bxk(k0)x0處取得求a,bg(x)

f

當(dāng)a 時(shí),求函數(shù)f(x)值域2當(dāng)a 時(shí),求函數(shù)f(x)的單調(diào)區(qū)間22當(dāng)a0yf(x在(e,f(e)) f(x 畫單調(diào)性表格;4求極值點(diǎn)即可)2求實(shí)數(shù)ab解析:(I)f(x2x3ax2bx1f(x6x22axf(x6(xa)2ba2 yf(xxa對(duì)稱,從而由題設(shè)條件知a1 解得af(1)0,所以62ab0,于是b(II)由(I)f(x)2x33x212xf(x)6x26x6(x1)(xx1f0—0+f↗↘↗從而函數(shù)fx)在x12處取得極大值f(221,在x21處取得極小值f(1)6.2(0920)f(xx33ax1,af(xf(xx1ymyf(x的圖象有三個(gè)不同的交點(diǎn),求m的取值范圍.值,所以m在極大值極小值之間1(11重慶理18)f(x)xaxbx的導(dǎo)數(shù)fx滿足fa,f,其中常數(shù)a,bRyf(xg(x)f'(x)exg(x2(12重慶理16)f(x)alnx

3x1aR2yf(x在點(diǎn)(1,f(1y求a3(0920)f(x1x3ax2bxf'(1)03試用含a的代數(shù)式表示bf(xa1,設(shè)函數(shù)f(x)x1x2(x1x2處取得極值,記點(diǎn)N4(200919)f(xx2bxcyf(x過(2,5g(x)xa)f(x)5(1221)f(x1x3x23f(xf(xx1x2,若過兩點(diǎn)(x1,f(x1)),(x2f(x2的直線lx軸的交點(diǎn)在曲線yf(x上,求a的值.6(1122)f(xx1alnx(axf(xf(xx1x2A(x1,f(x1,B(x2f(x2 確定a8(1320)f(xex(axbx24xyf在點(diǎn)(0,f(0))處切線方y(tǒng)4x求abf(xf(x9(1419)f(xxalnx3,其中aR yfx在點(diǎn)1,f1y12求a 文20)設(shè)函數(shù)f(x)sinxcosxx1,0x2,求函數(shù)f(x)的單調(diào)區(qū)間與極值.1(0821)已知afxx2xa 3xy20(Ⅱ)fx0xx的值分三個(gè)區(qū)間討論fx的正負(fù)得到函數(shù)的單調(diào)區(qū)間,根據(jù)函數(shù)的增減性得到函數(shù)的最大84a,a值.fma當(dāng)a1f(x

,求a2(I)

02 (Ⅱ)a2

2 【例題3(10重慶文19)已知函數(shù)fxax3x2 fx(I)'x)3ax22xbgf'f(x)=1x3 3 f(x)x33ax2(36a)x+12a4a(Ⅱ)

x

x00求ab求ag(xf(xf'(xg(x在[0,1]4(1018)設(shè)a0f(x1x2a1)xalnx2yf(x在(2,f(2處切線的斜率為-1,求af(x

22a31,其中a0xyf(x在(1,f(1y1平行,求af(x在區(qū)間[1,2]上的最小值6(1118)f(xlnxax2a2)xf(xx1ayf(x在[a2a7(18)f(x)xa)ex,其中eaRf(xx[0,4]f(x)的最小值8()f(x)x3ax2a2x,其中a0f0)4,求ayf(x在點(diǎn)(1,f(1))f(x)在區(qū)間[0,2]上的最小值

f(x)1x31x2 f(x)在2)上存在單調(diào)遞增區(qū)間,求a3當(dāng)0a2f(x)在[1,4]的最小值為16求

f(x)31、(13西城二模文18f(x)2x32x22a)x13a0若a2yf(x在點(diǎn)(1f(1f(x在區(qū)間[2,3]2、(13西城二模理19)已知函數(shù)f(x)2x32x22a)x13aR若a2yf(x在點(diǎn)(1f(1f(x在區(qū)間[2,3]g(xf(xexyf(x)P(x0,f(x0))(x00)處的切線為l4(1118)f(xx2alnxaR(Ⅰ)若a2f(x在(1,5(1118)f(x)x2alnxaR(Ⅰ)若a2f(x在(1,f(x在[1,e]6(1318)f(xlnxax2bx(其中a,b當(dāng)a1fxfx在0,e上的最大值為1,求a7(12東城一模理18)已知函數(shù)f(x)mlnx(m 當(dāng)m2yf(x在點(diǎn)(1f(1f(xf(xMM0,求m

2axa2x2

,其中aR當(dāng)a1yf(xf(xf(x在[0,上存在最大值和最小值,求a9(1219)f(xaln(xa1x2x(a0)2f(x若1a2(ln21)f(xx0a1x0a2當(dāng)4f(xxxx[0,x x2x11都有fx2fx1)m成立,求實(shí)數(shù)m(ln20.7,ln90.8,ln90.59 a(x10(11西城一模理18)已知函數(shù)f(x) ,其中a0f(xxy10yf(x的切線,求實(shí)數(shù)ag(x)xlnxx2f(x)g(x在區(qū)間[1,e](其中e為自然對(duì)數(shù)的底數(shù) 【例1】(2008年四川文20 設(shè)x1和x2是函fxx5ax3bxf'x5x43ax2f'153abf'2245223aba25,b解 【例2(20102文21)已知函數(shù)f(x)=x-3ax+3x+1。設(shè)f(x)3[(xa)21a2當(dāng)1a20f(x0,f(xf(x) 1a2 f(x) a2xa a21,xa2 a2 3,或2aa2, 55a, 3 因此a的取值范圍是43f(xf(x)xaxbx f(x1x1x2x3(f(x))22af(xb0的不同實(shí) 、2013128f(xR,x0x00f (xR,fxfx0 f B.0 f f 0 的極小值 0 的極小點(diǎn) 理10)已知a為常數(shù),函數(shù)f(x)x(lnxax)有兩個(gè)極值點(diǎn)x,x(x1x2則 ()A.f(x1)0C.f(x1)0

f(x) f(x)

B.f(x1)0D.f(x1)0

f(x) f(x) 文科17)已知函數(shù)f(x)x3mx2m2x1(m為常數(shù),5(1017)f(x6x33(a2)x22axf(x)的兩個(gè)極值點(diǎn)為x1,x2x1x21,求實(shí)數(shù)a的值; 理22)已知x3是函數(shù)fxaln1xx210x的一個(gè)極值點(diǎn),求a。f 1

3

x+bx

4

f(x)ln(ax1)1x,x1 f(xx=1af(xf(x)(xa)(x bRxaf(x)b

f(x)ax3bx2cxd(a f(x9x01,4a=3yf(xf(x)f(x)在()無極值點(diǎn),求a a求f(x)的極值點(diǎn);

f(x)1

其中

312(11浙江理22)設(shè)函數(shù)f(x)=(xa)2lnxa∈Rx=eyf(x的極值點(diǎn),求實(shí)數(shù)a

f(x)xsin大排成的數(shù)列為{xn.求數(shù)列{xn14(20122文21)已知函

f(x)1x3x2f(x)x1x2,若過兩點(diǎn)(x1f(x1,(x2f(x2的直線lx軸的交點(diǎn)在曲線yf(x上,求a的值。【例1(09 文21、理20)已知二次函數(shù)yg(x)的導(dǎo)函數(shù)的圖象與直線y2x平行,且yg(x)在x1處取得極小值m1m0fxg設(shè)函 , 的值kkR yfx m 2yfxkx1kxm2得

1kx22xm0xx2

yfx

k1時(shí),方程*有二解44m1k0m0k1myfx x 11m1kk1

21k

k ;若m0 yfx x 11m1k21k k 當(dāng)k1k1myfx

有一解x

44m1k,1,k1fx1x3x2m21xxR,其中m 當(dāng)m1yfx在點(diǎn)1,f1f f 0,x, x

2,且 xx1x2fxf1恒成立,求m(Ⅱ)f(x)在(,1m和(1m,內(nèi)減函數(shù),在(1m,1m)內(nèi)增函數(shù)f(x)在x1mf(1m),且f(1m)2m3m23函數(shù)f

在x1mf(1m),且f(1m)2m3m2

f(x)x(1x2xm21)1x(xx)(xx 1x2xm2

所以方程 14(m21) m1(舍),m xx,所以

x

3,故

32 2x1x,則f(1)1(1x)(1x若 ,而f(x1)0,不合題若1x1x2x[x1x2xx10,xx2f(x)1x(xx)(xx)3 又f(x1)0,所以函數(shù)f(x)3x[x1x20,x[x1x2f(x)f(1

f(1)m2131

3m ( 綜上,m的取值范圍是 2lnx,x 函 f(x)x39x26x xf(xm恒成立,求mf(x0有且僅有一個(gè)實(shí)根,求a3 文19)已知函數(shù)f(x)4x33tx26txt1,xR,其tR當(dāng)t1yf(x在點(diǎn)(0,f(0))當(dāng)t0f(x)證明:對(duì)任意的t(0,),f(x)在區(qū)間 上的最大值為 f(x)

f(x)axsinx3(a 0, 2f(x在(0,5 理21)已知函數(shù)f(x)exax2bx1,其中a,bRe2.71828g(xf(xg(x在區(qū)間[0,1]上的最小f(1)0f(x在區(qū)間(0,1)內(nèi)有零點(diǎn),求a f(x)x2x yf(x在點(diǎn)(af(ayba與bb

(II)f(x0x0f(x)f(xx0(0,f0f1所以函數(shù)f(x)在區(qū)間(,0)上單調(diào)遞減,在區(qū)間(0,)f(0)1f(x)當(dāng)b1yf(xyb當(dāng)b 時(shí) f(2b)f(2b)4b22b1>4b2b1bf(0)1bx1(2b0)x2(0,2bf(x1f(x2bf(x)在區(qū)間(,0)和(0,)b1yf(xyb的取值范圍是(1).

f(x)1x41ax3a2x2a4(a yf(xa 或0a1 fxaln1x 理22)已知x3是函

求af yby

2、已知曲線C:yeax,對(duì)任意的實(shí)數(shù)a,曲線 直線l:yax的上方,求實(shí)數(shù)b

f(x)1ax2xln (aR,a0若在區(qū)間1,f(xyax下方,求a的取值范4(11)

f(x)(a1)x2lnx,(a 區(qū)間(1f(xy2axa的取值范1(1118)f(xlnx(xa)2a∈R,12f(x2(1218)f(xekx(x2x1)(k0)kf(x3(1418)f(x1x3ax24xb3其中a,bRa0f(x在點(diǎn)(0,f(0f(x總有兩個(gè)不同的f(x在區(qū)間(1,1)上有且僅有一個(gè)極值點(diǎn),求實(shí)數(shù)a4(1318)fxlnxa(a0x點(diǎn)的切線的斜率k≤1恒成立,求實(shí)數(shù)a的最小值; x32bx 1(1418)f(xex(x1)yf(x在點(diǎn)(0,f(0))若對(duì)于任意的x(0)f(xk,求k的取值范(Ⅱ)(,e2)fxx1處取得極值,對(duì)x0,f(x)bx2恒成立,求實(shí)數(shù)ba0時(shí),f(x)的單增區(qū)間1,)a )a

f(x)設(shè)b0.若x[13]f(x1,求b42(1418)f(xlnxa,其中aRxa2f(x的圖象在點(diǎn)(1,f(13(1418)f(xlnx2aaRx若函數(shù)f(x)x1處取得極值,求af(xy2a的取值范圍.

ax

(aR,a0當(dāng)a1yf(x)在點(diǎn)1,f(1)5(1318)f(xlnxg(xa(a0)xa1yf(xM(x0f(x0yg(x)P(x0g(x0x0若x(0,e]f(x)g(x3,求實(shí)數(shù)a2 x 若a2yf(x在點(diǎn)(1,f(1f(xa設(shè)函數(shù)g(x)x

.若至少存在一個(gè)x0[1,e]f(x0g(x0成立,求實(shí)數(shù)ayfx在點(diǎn)0,f0xey1垂直,求a設(shè)a2e3x0,1fx1a8(1118)f(x1alnx(a0,aRx若a1f(x) xx2

(a0,aRf(x當(dāng)a1x1x2[3,,有立,求實(shí)數(shù)m的最小值.

fx1fx2m 文20)已知函數(shù)fxax33x21xR,其2a0若a1yfx在點(diǎn)2,f211fx0恒成立,求a222(1321)f(xx2axbg(xex(cxdyfxygxP(0,2),P處有相同的切線y4x2.求abcdx2f(xkg(x,求k答案:(Ⅰ)a4bcd21(12福建文15)已知關(guān)于x的不等式x2ax2a0在R上恒成立,則實(shí)數(shù)a的取值范圍是 則a 3(1411)x[2,1]ax3x24x30恒成立,則實(shí)數(shù)a的取值范圍是()A.[5,3]B.[6,9]C.[6,2]D.4,84 二文21)設(shè)函數(shù)f(x)1x3(1a)x24ax24a,其中3af(x)x0f(x0恒成立,求ax5、(11理18)已知函數(shù)f(x)(xk)2ekf(x)x(0fx1,求ke6(1321)fx=x33ax23x12求a 2x2,fx0,求a7(1221)f(xexax2f(x)若a1kx0時(shí),(xkf(xx108(1221)f(xaxcosxx[0,f(x)設(shè)f(x)1sinx,求a

2xsinxx2若不等式axx2 2x2cosx4對(duì)x0,1恒成立,2實(shí)數(shù)a10(1418)fxaxex(a0)求曲線在點(diǎn)0,f(0)11(1418)f(x1ax2xlnx(aRa2當(dāng)a2yf(x在(1,f(1若在區(qū)間1,f(xyax下方,求a12 理18)已知函數(shù)f(x)xcosxsinx,x ]2(Ⅰ)f(x0sin (Ⅱ)若a b在 )上恒成立,求的最大值與的最小值 13、(1121f(xa2lnxx2axa0f(x)求所有實(shí)數(shù)a,使e1

f(xe2x[1,e14 理19)已知函數(shù)f(x)2x1(Ⅰ)f(x2x(Ⅱ)若2tf(2tmf(t0對(duì)于t[1,2恒成立,求實(shí)數(shù)m15 理20)已知函數(shù)fxxabx0,其中a,bRx

若對(duì)于任意的a12fx10在1,1 求b 文21設(shè)函數(shù)fxx4ax32x2bxR,其中a,bR當(dāng)a10fx3fxx0處有極值,求a立,求b的取值范圍.f 1 文21)已知關(guān)于x的函數(shù)3

f'xgxfxgx在區(qū)間[1,1]M3b1cM2.MK對(duì)任意的b、c恒成立,試求k18(1020f(xx2bxc(bcRxR,恒有fxfx.(Ⅰ)x0f(x(xc)2若對(duì)滿足題設(shè)條件的任意bcf(cf(bM(c2b2恒M19、(1222a0bRf(x4ax32bxab(Ⅰ)證明:當(dāng)0x1f(x)2abafx2aba0(Ⅱ)若1fx1x0,1ab320 文21)設(shè)函數(shù)fx1x3x2m21xxR,其3m0當(dāng)m1yfx在點(diǎn)1f1fx有三個(gè)互不相同的零點(diǎn)0x1x2x1x2,xx1x2fxf1恒成立,求m的取值范圍.21(11文20設(shè)函數(shù)f(x)x32ax2bxa,g(x)x23x2xRa、by有相同的切線l

f(xyg(x)在點(diǎn)(2,0)求a、b的值,并寫出切線lf(xg(xmx有三個(gè)互不相同的實(shí)根0、x1、x2數(shù)m的取值范圍. 1

1x

.1若不等式

e對(duì)任意的nN都成立(其中e n,求xeyf(x的極值點(diǎn),求實(shí)數(shù)ax3x 21(Ⅰ)求證:1xfx1x1(Ⅱ)fxgx恒成立求實(shí)數(shù)a的25(1422)fxx33xaaRMama.(Ⅱ)設(shè)bRfxb24x[1,1恒成立,求3ab的調(diào)遞增,則k的取值范圍是()D 一文21)已知函數(shù)fxx3ax2x1,aRf(x 3 (Ⅰ) a 時(shí),f(x)的單增區(qū)間為R當(dāng)a 或a a a233f(x)的單增區(qū)間 3 aa23,a a23單減區(qū)間 1(139)fx=x2ax1在1是增函數(shù),則a 取值范圍是(2(10一文21)已知函數(shù)f(x)3ax42(3a1)x24x當(dāng)a1f(x)6f(x在1,1上是增函數(shù),求a當(dāng)b4fx

12xbfx在區(qū)間0,1上單調(diào)遞增,求b 3 4(1421)fx=ax33x23x(a 18)已知函數(shù)f(x)x3ax2xc,且a求af(x)

f'()3 上單調(diào)遞增,求實(shí)數(shù)c6(12石景山18)已知函數(shù)f(x)x22alnxf(x g(x2f(x在[1,2]ax7 理16)設(shè)f(x)1ax2,其中a為正實(shí)數(shù)當(dāng)a4f(x3f(x)R上的單調(diào)函數(shù),求a8(1318)fxlnxa(a0xPx,y為切點(diǎn)的切線的斜率k1恒成立,求實(shí)數(shù)a 9(1017)f(x)6x33(a2)x22axf(xx1x2x1x21,求實(shí)數(shù)aaf(x是(上的單調(diào)函數(shù)?若存在,求出a的值;若不存在,說明理由.10(1021)f(xaxa1lnx15a其中a0xaf(x(2x33ax36ax4a26a)ex,xg(x)ef(x),x

(e11(13西城18)已知函數(shù)f(x)exax,g(x)axlnx,其中a0.f(x)使求a的取值范圍.

f(xg(xM12(0921)fx1ax3bx2x3,其中a03當(dāng)abf(x已知a0且

f(x在區(qū)間0,1a表示出b13(0821)fx1x4x39x2cx 若存在實(shí)數(shù)cfx在區(qū)間aa2上單調(diào)遞減,求a的1(1118)f(x=exaxa∈Rf(x2(1118)f(x)a1)x2lnx,(a2求a的取值范圍.

f(xy2ax3(1218)f(x1x22xaex2若a1f(xx1f(x在R上是增函數(shù),求實(shí)數(shù)a4(1418)已知aRf(x1x31(a2)x2b g(x)2alnxyf(xyg(x在它們的交點(diǎn)(1,c處的切線互相垂直,求ab的值;F(xf'(xg(xx1x2(0,x1x2F(x2F(x1a(x2x1,求a5(13海淀二模理18)已知函數(shù)f(x)exA(a0xt(tafxxMN,記AMN的面積為S(t).當(dāng)a0S(t當(dāng)a2t0[0,2S(t0ea6(1318)f(xlnxg(xa(a0)x當(dāng)a1yf(xM(x0f(x0yg(xP(x0g(x0x03若x(0,e],都有f(x)g(x) ,求實(shí)數(shù)a的取值范圍27(1118)f(x1x3ax23(Ⅰ)f'(0)f'(21f(x

(a,bR)若ba2f(x在區(qū)間(0,1上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.8(1318)f(xaxlnxg(x)eax3x,其中aR.f(x求a的取值范圍.9(1318)f(xg( )Rf(x

1(m0當(dāng)m0x1x2[0,2]f(x1g(x2恒成立,求a10(1218)f(x1x22ex3e2lnxb在x x0和bf(x)≥0F(xf(xa有最小值mm2e,求實(shí)數(shù)ax11(1118)f(xxalnx,gx1a,(ax若a1f(x設(shè)函數(shù)h(x)f(x)g(x),求函數(shù)h(x)g(x0成立,求a12(1318)f(x1x22ex3e2lnxb在x x0和b求證:在定義域內(nèi)f(x)≥0a若函數(shù)F(x)f(x) 有最小值m,且m2e,求實(shí)數(shù)a的x

當(dāng)a8fx對(duì)任意正數(shù)a,證明:1fx2

1 1解:1、當(dāng)a8時(shí),fx 1,求得fx 30.即f(x在(0,1]中單調(diào)遞增,而在[1, (2.() b

fx 1(一)、先證fx1;因1 1

1x1

,1又由2abx 442abx8,得abx6 fx

3 (x(

1a

a 1x1a19(abx)(abaxbx)(1x)(1a)(1b)1(abx)(abaxbx) (1x)(1a)(1b)(、再證fx2;由①、②式中關(guān)于xab的對(duì)稱性,不妨設(shè)xab.則0b1 1 21 1 1 1 1 1 (ⅱ、當(dāng)ab7…③,由①得,x 1 1

1

[ 24 1 12

fx21 … 21 1 ab8今證

⑦ 因 1

1a a 1

1, ,即ab8(1a)(1b),也即ab7 f(x2綜上所述,對(duì)任何正數(shù)a,x,皆有1fx2(0921)f(x)x33x2ax如ab3f(x)f(x在(,),(2,)單調(diào)增加,在(2),(單調(diào)減少,證明<6.(Ⅰ)當(dāng)ab3f(xx33x23x3)ex,故f'(x)(x33x23x3)ex(3x26xex(x3x(x3)(xx30x3時(shí),f'(x當(dāng)3x0或x3時(shí),f'(x從而f(x)在(30減少

0 f'(x)(x33x2axb)ex(3x26xa)exex[x3(a6)xbf'(2)0,即232(a6)ba0,故b4af'(x)ex[x3(a6)x4f'(f'(0x3(a6)x42a(x2)(x)(x(x2)(x2()x將右邊展開,與左邊比較系數(shù)得,2,a2. 12又(2)(2)0,即2(40.由此可得ax1解: f'(x)

ex

1ex

x

ex,fx)0,得x x0時(shí)fx00x1時(shí),fx0x1時(shí)f'(x)0: f'(x)k(1x)f(x)(x1)(kx1)ex0(x1)(kx10

}故:當(dāng)0k1時(shí),解集是:{x1x}k當(dāng)k1時(shí),解集是:{x x1}. 卷2理22)設(shè)函數(shù)fxx2aIn1x有兩個(gè)極值求afxfx214. ,x處的切線方y(tǒng)x1用a表示出bc證明:1+1+1+...+1ln(n1) (n1) 2(n1 文22)設(shè)f(x)1ax(a0且a(Ⅰ)g(x

g(xf(x)當(dāng)x[2,6]時(shí),恒有g(shù)(x) a(x21)(7

成立,求t當(dāng)0a1時(shí),試比較f(1)f(2) f(n)與n4的大小24.(20102理20)已知函數(shù)f(x)(x1)lnxxxf'(x)x2ax1,求a5.(10湖南理)f(xx2bxc(bcRxRf'(x)≤f(Ⅰ)x0f(x(xc)2若對(duì)滿足題設(shè)條件的任意bcf(cf(bM(c2b2恒成立,求M的最小值.

a,gxalnxf(xa0x1x20eg(x1f(x2成 2(11東城一模理18)已知函數(shù)f(x)xlnx,g(x) 證明:對(duì)任意m,n(0,),都有f(m)g(n3(1219)fxa1lnx1x(a1 a

65

x 其中a≥0x2x3,x1x2Rx1x2f(x1f(x2),求a的 yx1e

x

+x(a≠0)求實(shí)數(shù)a

f(x在點(diǎn)(1,f(1x2y0f(xa0時(shí),記函數(shù)f(x)的最小值為g(a),求證:g(a)1e22

x

求實(shí)數(shù)a

(1)f(xf(x)3-x 1(20115)1ex2x)dx(0 b值.求定積分af(x)dx時(shí),可按以下兩步進(jìn)行第一步:求使F(x)=f(x)F(x)b

23S

2x2dx,S

21dx,S2

SSS 1 A.S1S2C.S2S3

B.S2S1D.S3S2v(t73t+

B.825lnA.125lnC.425ln

3f(x)=x221f(x)dx,則1f(x)dx0 3

1 33 理3)已知二次函數(shù)yf(x)的圖像如圖所示,則它與x D. 4、 2理8)曲線ye2x1在點(diǎn)0,2處的切線與直線y0yx圍成的三角形的面積為

D.xx10 ,xkRf(x1

fx

1當(dāng)a8f1對(duì)任意正數(shù)a,證明:1fx2已知函數(shù)f(x)1x41ax3a2x2a4a0) yf(xf(xlnxlnxln(x1)1x若存在,求a的取值范圍;若不存在,試說明理由.f(x)ax3bx23a2x1(a,bRxx2xx1x1x22若a1,求b若a0,求b7(22)f(xx3mx2nx2的圖象過點(diǎn)(-1,-6)g(xf'(x6xy軸對(duì)稱.

2x.x1(I)求函數(shù)f(x(Ⅱ)若不等式(11)aaenN*都成立(en數(shù)的底數(shù)).求9(21)f(x1x4x39x2 (1)27c5(2)若存在實(shí)數(shù)cf(x在區(qū)間aa2a的取10(文科

已知函數(shù)f(x)x3mx2m2x1若斜率為5yf(x單位,年初為起點(diǎn),根據(jù)數(shù)據(jù),某水庫的蓄水量(單位:億立方米)關(guān)于t的近似函數(shù)關(guān)系式為 V(t)=(t214t40)ex50,0t月份(i1,2?,2)12( 大綱文理科22)單調(diào)性已知函數(shù)f(x)x3ax2xaRf(x) 3

f(x)2x1f(x2x2tf(2tmf(t0對(duì)于t[1,2恒成立,求實(shí)數(shù)m x(xa)f(x02a的取值范圍,使得6g(a≤2f(x在區(qū)間[0,2PAB20km,CD10km,為了處理三家工廠的污水,①設(shè)BAO(rady表示成②設(shè)OPx(km)yxx3fxaln1xx210x求ayb與函數(shù)y

x1x2fxx5ax3bx1的兩個(gè)極值點(diǎn)。求a和b

fxxabx0,其中a,bx

2a1,2

求b

fxx4ax32x2bxR其中a,bRa 3時(shí),討論函數(shù)fx的單調(diào)性fxx0處有極值,求a21(22)f(xln(1xxf(x()f(x)0,n(nN*)bn,令anln(1n)bn

a1a1a3a1a3a2n1

2an2anaa

aa 2 2 已知函數(shù)f(x)x3mx2nx2的圖象過點(diǎn)(1,6g( fx)y求m、nyf(x若a0yf(x在區(qū)間(a1,a1)23.(二文22)已知函數(shù)f(x)x3ax2x1,aRf(xf(x在區(qū)間

內(nèi)是減函數(shù),求a 3

ln1

lnxln(xaxf(xa的解集為(0,?若存在,求a的取值范圍;若不存在,試說明理由.25(遼寧文22)f(x)ax3bx23a2x1(abRxx1xx2x1x22若a1,求bf(x若a0,求b5.ACCDACD

xcosxsinx16.3x036ACBBD1、4、6、BDAx0y2x02tan(P處切線的傾斜角又∵ 4∴02x21,∴x[1, D

2=

y'2ax,于是切線的斜率ky'x12a2a2aBA3f(x)x22,f(1)122bln212.2;-

f(1x)f(1)33x6y3301y=x-44yax2bxcP(1,1)∴abcy2axb,∴yx24a∴4ab1③.聯(lián)立解①、②、③得a3,b11,c 3、B4、A5、 6、A7、A8、A9、A10、33x6y3301y=x-4

361、函數(shù)在區(qū)間1內(nèi)是增函數(shù),在區(qū)間1 6 2、單增區(qū)間為,310、310,310,3105、xcosx01、f221f22、f570f23、f221f056x1時(shí),最大值32、設(shè)半徑為rcm,高為hcm,當(dāng)半徑r ,高h(yuǎn) 1、函數(shù)在區(qū)間2內(nèi)是增函數(shù),在區(qū)間2 3 3

11

3

211,3

,單減區(qū)間為

3

11, 4、log22x105、2xsinxcosx06、f237f2277、f485f2279、f228f37 b 11、當(dāng)a0時(shí),有最小值f

b 當(dāng)a0時(shí),有最大值f

1345

2a ABCCBC2 (3)0(4)0) BCCCB92 46yx3x22xx11x20x32又易判斷出在(1,0)x軸下方;在(0,2)內(nèi),圖形在x軸上方。A

0(x3x22x)dx

2x3x2

37( (y2解方程組yx4得出交點(diǎn)坐標(biāo)(2,-2),(8,4) S=

(y4 ) 4y

|4 0|cosx|dx0|cosx|dx2cos 1(1x208.39.2πe 5、 6:e21、 3、 4、D5、A6、(ln2,2)7、5xy208、1、A2、A3、A4、B5、A6、間為(1,2).(Ⅱ)a14(Ⅱ)f(x的單調(diào)遞增區(qū)間是(,1和(3,間是是 遞減區(qū)間是1,1 3 為1,3,3, 區(qū)間是3f33f 2為2,3f296ln2f326ln2 2x23(1a)x6a [3(1a)]2426a3(3a1)(a3)1(1)0,即3(3a1)(a3)0

a3,a3當(dāng)1a1時(shí),3

2x23a a恒成立,BRD BA(0,(2)0,a1,B{xR|2x24x6a0}{x1}3D B (3)0,即0a13 33a9a230a9 D , 1a1fxD內(nèi)有一個(gè)極大值點(diǎn)a,有一個(gè)極小值點(diǎn)3當(dāng)0a1h1231a6a=3a10ha2a231aa6a=3aa2fxD內(nèi)有一個(gè)極大值點(diǎn)當(dāng)a0,則a

exx22xk,g'xx2'x)0x22xk

x2k(1)44k<0k>1'x)>0RgR上為增函數(shù)

(2)當(dāng)44k0k1

20,k1 x g在為增函數(shù)(3)44k>00<k<1x22xk0有兩個(gè)不相等實(shí)根,當(dāng)x(,11k),時(shí)g為增函數(shù)當(dāng)x 1 1k)時(shí)g x 1 g為減函數(shù), , 為增函數(shù) (Ⅱ)當(dāng)a時(shí),單調(diào)增區(qū)間為 和a,當(dāng)a時(shí),單調(diào)增區(qū)間為,,單調(diào)減區(qū)間為0, 2 (Ⅱ)①當(dāng)a0時(shí),f(x在(0,1)上單增,在(1②當(dāng)0a12在

f(x在(0,1)和(1③當(dāng)a12④當(dāng)a1

f(x在(0,f(x在(0,1和(1,上單增,在(1

3 ,b3,切線 6x2y102(Ⅱ)g'(x3x29x)exg'(x0x0,x3 x03

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論