第十章課件奧本海姆本信號(hào)與系統(tǒng)_第1頁(yè)
第十章課件奧本海姆本信號(hào)與系統(tǒng)_第2頁(yè)
第十章課件奧本海姆本信號(hào)與系統(tǒng)_第3頁(yè)
第十章課件奧本海姆本信號(hào)與系統(tǒng)_第4頁(yè)
第十章課件奧本海姆本信號(hào)與系統(tǒng)_第5頁(yè)
已閱讀5頁(yè),還剩91頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1TheZ-TransformCH10Theprimaryfocusofthischapterwillbeon:Thez-TransformandtheRegionofConvergenceforthez-TransformTheInversez-TransformGeometricEvaluationoftheFourierTransformfromthePole-ZeroPlotPropertiesofthez-TransformandsomeCommonz-TransformPairsAnalysisandCharacterizationofLTISystemsUsingz-TransformSystemFunctionAlgebraandBlockDiagramRepresentationsTheUnilateralz-Transform210.0INTRODUCTIONz-transformisthediscrete-timecounterpartoftheLaplacetransform,themotivationforandpropertiesofthez-transformcloselyparallelthoseoftheLaplacetransform.However,theyhavesomeimportantdistinctionsthatarisefromthefundamentaldifferencesbetweencontinuous-timeanddiscrete-timesignalsandsystems.z-transformexpandtheapplicationinwhichFourieranalysiscanbeused.

310.1

Thez-TransformThez-transform

ofageneraldiscrete-timesignalx[n]

isdefinedaswherezisacomplexvariable.Wewilldenotethetransformrelationshipbetweenx[n]andX(z)asThedefinationofthe

z-transform

:Therelationshipbetweenx[n]and

X(z)

4Therelationshipbetweenthez-transformandthediscrete-timeFouriertransformExpressingthecomplexvariablezinpolarformas

istheFouriertransformofx[n]multipliedbyarealexponentialSo,thez-transformisanextensionoftheDTFT.Forr=1,orequivalently,|z|=1,z-transformequationreducestotheFouriertransform.5Thez-transformreducestotheFouriertransformforvaluesofzontheunitcircle.z-planeω

1ImReUnitcircleDifferentfromthecontinuous-timecase,thez-transformreducestotheFouriertransformonthecontourinthecomplexz-planecorrespondingtoacirclewitharadiusofunity.Thez-transformreducestothediscrete-timeFouriertransformThez-transformreducestothediscrete-timeFouriertransform6Ingeneral,thez-transformofasequencehasassociatedwithitarangeofvaluesofzforwhichX(z)converges,andthisrangeofvaluesisreferredtoastheregionofconvergence(ROC).Forconvergenceofthez-transform,werequirethattheFouriertransformofconverge.Foranyspecificsequencex[n],itisthisconvergenceforsomevalueofr.IftheROCincludestheunitcircle,thentheFouriertransformalsoconverges.Theregionofconvergence(ROC)―dependsonlyonr=|z|,justliketheROCins-planeonlydependsonRe(s).7ForconvergenceofX(z),werequirethat

Consequently,theregionofconvergenceistherangeofvaluesofzforwhich

Then

Unitcirclez-planeIm

a1RePole-zeroplotandregionofconvergenceforExample10.1for0<α<1Example10.1Considerthesignal8TheROCdoesnotincludetheunitcircle,consequently,itisimpossibletoobtaintheFouriertransformfrom,Z

plate1NowConsiderthestepsignal9Example10.2Determinethez-transformofIf,thissumconvergesandUnitcirclez-planeIma1RePole-zeroplotandregionofconvergenceforExample10.2for0<α<110Example10.3Considerasignalthatisthesumoftworealexponentials:Thez-transformisthenIm

1/31/213/2

Re11Example10.4.Considerthesignal:

Generally,theROCofconsistsofaringinthez-planecenteredabouttheorigin.21/2Z

plateUnitcircle12Example10.5ConsiderthesignalThez-transformofthissignalis,|z|>1/3

Im

1/31

Re13

ifthez-transformisrational,itsnumeratoranddenominatorpolynomialcanbefactarized.

so,thez-transformischacterizedbyallitspolesandzerosexceptaconstantfactor.Thegeometricrepresentationofthez-transform——thePole-Zeroplot:14

x[n]canbeonlydeterminedbyallpolesandzerosofX(z)andtheROCoftheX(z).

Thepole-zeroplot,illustrateallpolesandzerosofthez-transforminzplane,isthegeometricrepresentationofthez-transform.

Thepole-zeroplotisespeciallyusefulfordescribingandanalyzingthepropertiesofthediscrete-timeLTIsystem.1510.2TheRegionofConvergenceforthez-TransformPropertiesoftheROCforz-transform:Property1

TheROCofX(z)consistsofaringinthez-planecenteredabouttheorigin.Property

2TheROCdoesnotcontainanypoles.Property

3Ifx[n]isoffiniteduration,thentheROCistheentirez-plane,exceptpossiblyz=0and/orz=∞.Convergenceisdependentonlyonandnoton.16Example10.6Considertheunitsamplesignalδ[n].withanROCconsistingoftheentirez-plane,includingz=0andz=∞.Ontheotherhand,

theROCconsistsoftheentirez-plane,includingz=∞but

excludingz=0.Similarly,

theROCconsistsoftheentirez-plane,includingz=

0butexcludingz=

∞.17Property4Ifx[n]isaright-sidedsequence,andifthecircleisintheROC,thenallfinitevaluesofzforwhichwillalsobeintheROC.Imz-plane

Re185)PropertyIfx[n]isaleft-sidedsequence,andifthecircleisintheROC,thenallvaluesofzforwhichwillalsobeintheROC.Imz-plane

Re6)Property

Ifx[n]istwosided,andifthecircleisintheROC,thentheROCwillconsistofaringinthez-planethatincludesthecircle.Imz-plane

Re1920poles:(order1)(orderN-1)zeros:0Atz=a,thezerocancelthepole.Consequently,therearenopolesotherthanattheorigin.Example10.7Considethefinitedurationx[n]other21Example10.8ConsideratwosidedsequenceForb>1,thereisnocommonROC,andthusthesequencewillnothaveaz-transform.Forb<1,theROCsoverlap,andthusthez-transformforthecompositesequenceisUnitcircleImb1/bRe22Property

8Ifthez-transformX(z)ofx[n]isrational,andifx[n]isrightsided,thentheROCistheregioninthez-planeoutsidetheoutermostpole―i.e.,outsidethecircleofradiusequaltothelargestmagnitudeofthepolesofX(z).Furthermore,ifx[n]iscausal,thentheROCalsoincludesz=∞.Property

9Ifthez-transformX(z)ofx[n]isrational,andifx[n]isleftsided,thentheROCistheregioninthez-planeinsidetheinnermostnonzeropole―i.e.,insidethecircleofradiusequaltothesmallestmagnitudeofthepolesofX(z)otherthananyatz=0andextendinginwardtoandpossiblyincludingz=0.Inparticular,ifx[n]isanticausal,thentheROCalsoincludesz=0.Property

7Ifthez-transformX(z)ofx[n]isrational,thenitsROCisboundedbypolesorextendstoinfinity.23Example10.9ConsiderallofthepossibleROCsthatcanbeconnectedwiththefunction

ReUnitcircleImTheROCifx[n]isleftsidedTheROCifx[n]isrightsidedTheROCifx[n]istwosidedandistheonlyoneofthethreeforwhichtheFouriertransformconverges.zeros:(order2)poles:24一.Theexpressionoftheinversez-transform:10.3.TheInversez-TtansformMultiplyingbothsidesby,weobtainChangingthevariableofintegrationfromωtozwithrfixedandvaryingoverainterval:Thus,thebasicinversez-transformequationis:25TheformalevaluationoftheintegralforageneralX(z)requirestheuseofcontourintegrationinthecomplexplane.Thesymboldenotesintegrationaroundacounterclockwisecircularcontourcenteredattheoriginandwithradiusr.Therearetwoalternativeproceduresforobtainingasequencefromitsz-transform:oneispartial-fractionexpansion,theotherispower-seriesexpansion.二.Theproceduresforobtainingasequencefromitsz-transform:26Thepartial-fractionexpansionForrathionalz-transformX(z),determineallpolesofit.Then,itcanbeexpandedbythemethodofpartial-fraction,andweobtainexpressionofthez-transformasalinearcombinationofsimplerterms:NowspecifytheROCassociatedwitheachterm.Finally,determinetheinversez-transformofeachoftheseindivialtermsbasedontheROCassociatedwitheach.SothattheinversetransformofX(z)equalsthesunoftheinversetransformsoftheindividualtermsintheequation.27Example10.10Considerthez-transformTherearetwopoles,oneatz=1/3andoneatz=1/4.Performingthepartial-fractionexpansion,weobtain28Power-seriesexpansionThisprocedureismotivatedbytheobservationthatthedefinitionofthez-transformcanbeinterpretedasapowerseriesinvolvingbothpositiveandnegativepowersofz.Thecoefficientsinthispowerseriesare,infact,thesequencevaluesx[n].29Example10.11Considerthez-transformFromthepower-seriesdefinitionofthez-transform,wecandeterminetheinversetransformofX(z)byinspection:Thatis,SomeusefulZTpairs:30Example10.10Considerthez-transform

Thenperforminglongdivision:

FromtheROC,wecanconcludethatthecorrespondingsequencex[n]isright-sided,sothatwearrangethenumeratorpolynomialandthedenominatorpolynomialwithaorderofthepowerofzdecreasing(oraorderofthepowerofincreasing).31

IftheROCis|z|<|α|,beforeperforminglongdivision,wearrangethenumeratorpolynomialandthedenominatorpolynomialwith

aorderofthepowerofzincreasing(oraorderofthepowerofdecreasing).

Thenperforminglongdivision:

32Fortwo-sidedsequence

performingthelongdivisiontothetwotermsrespectively.33theResidueTheoremisapoleoutsidethecontourC

。,

isapoleinsidethecontourC。,Contourintegration34Example10.11Considerthez-transform

Fromthedefinitionoftheinversez-transform,ThiscontourintegrationcanbeevaluatedthroughusingtheResidueTheorem,thusSincetheROCis|z|>1,sothecorrespondingsequenceisrightsided.35For,hasonlytwofirst-orderpoles:ThenFor,hasthreefirst-orderpoles:ThenFor,hastwofirst-orderpoles:andasecond-orderpole:36ThenConsequently,37

Inthediscrete-timecase,theFouriertransformcanbeevaluatedgeometricallybyconsideringthepoleandzerovectorsinthez-plane.Sinceinthiscasetherationalfunctionistobeevaluatedonthecontour|z|=1,weconsiderthevectorsfromthepolesandzerostotheunitcircle.Considerafirst-ordercausaldiscrete-timesystemwithaimpulseresponse:Itsz-transformis

10.4.GeometricEvaluationofTheFourierTransformFromThePole-ZeroPlot38For|a|<1,theROCincludestheunitcircle,andconsequently,theFouriertransformofh[n]convergesandisequaltoH(z)for.Thefrequencyresponseforthefirst-ordersystemis

thepole-zeroplotforH(z),includingthevectorsfromthepole(atz=a)andzero(atz=0)totheunitcircle.39Magnitudeofthefrequencyresponsefora=0.95anda=0.5Phaseofthefrequencyresponsefora=0.95anda=0.5

themagnitudeofthefrequencyresponsewillbemaximumat=0andwilldecreasesmonotonicallyasincreasesfrom0to.40a10Magnitudeofthefrequencyresponsefora=-0.95anda=-0.5Phaseofthefrequencyresponsefora=-0.95anda=-0.5411)LinearityNote:

ROCisatleasttheintersectionofR1andR2,whichcouldbeempty,alsocanbelargerthantheintersection.Forsequencewithrationalz-transform,ifthepolesofaX1(z)+bX2(z)consistofallofthepolesofX1(z)andX2(z)(ifthereisnopole-zerocancellation),thentheROCwillbeexactlytotheoverlapoftheindividualROC.Ifthelinearcombinitionissuchthatsomezerosareintroducedthatcancelpoles,thenROCmaybelarger.Ifandthen10.5.PropertiesofThez-Transform42Exceptforthepossibleadditionordeletionoftheoriginorinfinity.If2)TimeShiftingthen43Example10.12

ConsiderthesignalFromExample7.1,weknowSothat,Infact,Inprocedure(?),onepoleatz=0wasintroduced,anditcanceledazeroatthesamelocation.Andfromthetimeshiftingproperty,(?)Notethechanginginpolesorzeroswhenusingthetime-shiftingproperty.443)Scalinginthez-DomainIfthenGeneralcase:when,thepoleandzerolocationsarerotatedbyandscaledinmagnitudebyafactorof.Specialcase:when,1/2454)TimeReversal5)TimeExpansionConsequence:ifz0isintheROCforx[n],then1/z0isintheROCforx[–n].Ififnisamultipleofkifnisnotamultipleofk466)Conjugation7)TheConvolutionProperty

Consequence:ifx[n]isreal,Thus,ifX(z)hasapole(orzero)atz=z0,itmustalsohaveapole(orzero)atthecomplexconjugatepointz=z0*.Ifandthen47

theROCofX1(z)X2(z)maybelargerifpole-zerocancellationoccursintheproduct.Proof:48SinceFromtheconvolutionproperty,IftheROCofX(z)isR,thentheROCofW(z)mustincludesatleasttheinterconnectionofRwith|z|>1.Consideritsz-transform.(SupposeX(z)isgiven)Example10.13letw[n]betherunningsumofx[n]:498)Differentiationinthez-DomainExample14.

50Example10.15(p773)Determinetheinversez-transformforFromExample10.1,

andhence,519)TheInitial-andFinal-ValueTheoremsInitial-valuetheorem:Final-valuetheorem:Ifx[n]isacausalsequence,i.e.,x[n]=0,forn<0,then52終值定理:若是因果信號(hào),且,除了在可以有一階極點(diǎn)外,其它極點(diǎn)均在單位圓內(nèi),則

證明:在單位圓上無極點(diǎn)

除了在可以有一階極點(diǎn)外,其它極點(diǎn)均在單位圓內(nèi),53

這其實(shí)表明:如果有終值存在,則其終值等于在處的留數(shù)。54Z平面上極點(diǎn)位置與信號(hào)模式的關(guān)系示意圖5510.6SomeCommonZ-TransformPairsTable10.1,thepropertiesofthez-transform.Table10.2,anumberofusefulz-transformpairs.5610.7.AnalysisandCharacterizationofLTISystemsUsingzTransform

SystemfunctionWeknow,inthetimedomain,theinputandtheoutputofanLTIsystemarerelatedthroughConvolutionbytheimpulseresponseofthesystem.Thus

y[n]=h[n]*x[n]supposeFromConvolutionProperty

Y(z)=H(z)X(z)systemfunction(transferfunction)For,H(z)isthefrequencyresponseoftheLTIsystem.5710.7.1

RelatingCausalitytotheSystemfunctionForacausalLTIsystem,theimpulseresponseiszeroforn<0andthusisrightsided.TheROCassociatedwiththesystemfunctionforacausalsystemistheexteriorofacircleinthez-plane.Becausethepowerseriesdoesnotincludeanypositivepowersofz,theROCincludeinfinity.IfH(z)isrational,forthesystemtobecausal,theROCmustbeoutsidetheoutermostpoleandinfinitymustbeintheROC.Equivalently,thenumeratorofH(z)hasdegreenolargerthanthedenominatorwhenbothareexpressedaspolynomials.58Adiscrete-timeLTIsystemiscausalifandonlyiftheROCofitssystemfunctionistheexteriorofacircle,includinginfinity.Adiscrete-timeLTIsystemwithrationalsystemfunctionH(z)iscausalifandonlyif:(a)theROCistheexteriorofacircleoutsidetheoutermostpole;and(b)withH(z)expressedasaratioofpolynomialsinz,theorderofthenumeratorcannotbegreaterthantheorderofthedenominator.Summarizing,wehavethefollowprinciples:59stableH[n]absolutelysummableh[n]hasFTROCofh[n]’sZTcontainstheunitcircle10.7.2RelatingStabilitytotheSystemfunctionThestabilityofadiscrete-timeLTIsystemisequivalenttoitsimpulseresponsebeingabsolutelysummable,inwhichcasetheFouriertransformoftheimpulseresponseconverges.SinceSummarizing:AnLTIsystemisstableifandonlyiftheROCofitssystemfunctionH(z)includestheunitcircle,|z|=1.AcausalLTIsystemwithrationalsystemfunctionH(z)isstableifandonlyifallofthepolesofH(z)lieinsidetheunitcircle―i.e.,theymustallhavemagnitudesmallerthan1.60ForanLTIsystemwhichisdescribedbyaN-order

linearconstant-coefficientdifferenceequationoftheform10.7.3LTISystemCharacterizedbyLinearConstant-CoefficientDifferenceEquationsThentakingz-transformsofbothsidesoftheaboveequationandusingthelinearityandtime-shiftingproperties,weobtain:61Soitssystemfunction(transferfunction)is:Thus,thesystemfunctionforasystemspecifiedbyadifferenceequationisalwaysrational.的ROC需要通過其它條件確定,如:1.系統(tǒng)的因果性或穩(wěn)定性。2.系統(tǒng)是否具有零初始條件等。62LTI系統(tǒng)的Z變換分析法:1)由求得及其。2)由系統(tǒng)的描述求得及其。分析步驟:3)由得出并確定它的ROC包括。4)對(duì)做反變換得到。63Wecanconcludethatthesystemisnotcausal,becausethenumeratorofH(z)isofhigherorderthanthedenominator.Example10.16(p777)ConsiderasystemwithsystemfunctionwhosealgebraicexpressionisInfact,sinceEvenwedon’tknowtheROCforthissystemfunction.However,fromthepointthattheinversetransformofzisδ[n+1],wecanconcludethissystemisnoncausal.64Example10.17(p777)Considerasystemwithsystemfunction

Wecanconcludethatthesystemiscausal.

FromweseethatH(z)isrationalandthenumeratoranddenominatorofH(z)arebothofdegreetwo.Inaddition,theROCforthissystemfunctionistheexteriorofacircleoutsidetheoutermostpole.65Example10.18(p779)Considerasecond-ordercausalsystemwithsystemfunctionItspoleslocatedatand.

ReUnitcircleImz-planer

θ

1

ReUnitcircleImz-planer

θ

1

r<1

r>1

stable

unstable66Example10.19(p782)Considerastableandcausalsystemwithimpulseresponseh[n]andrationalsystemfunctionH(z).SupposeitisknownthatH(z)containsapoleatz=1/2andazerosomewhereontheunitcircle.Theprecisenumberandlocationofalloftheotherpolesandzerosareunknown.Foreachofthefollowingstatements,letusdeterminewhetherwecandefinitelysaythatitistrue,whetherwecandefinitelysaythatitisfalse,orwhetherthereisinsufficientinformationgiventodetermineifitistrueornot:(a)converges.(b)forsomeω.(c)h[n]hasfiniteduration.(d)h[n]isreal.(e)g[n]=n{h[n]*h[n]}istheimpulseresponseofastablesystem.

╳Insufficient!

67Theuseofthez-transformtoconvertsystemdescriptionstoalgebraicequationsisalsohelpfulinanalyzinginterconnectionsofLTIsystemsandinrepresentingandsynthesizingsystemsasinterconnectionsofbasicsystembuildingblocks.10.8.SystemFunctionAlgebraandBlockDiagramRepresentations68SystemfunctionforinterconnectionsofLTIsystems:ROCcontaining1.SeriesinterconnectionsofLTIsystems

:2.ParallelinterconnectionsofLTIsystems

:ROCcontaining69h1[n]H1(z)x[n]h2[n]H2(z)x(z)y[n]Y(z)e[n]+-E(z)3.Thefeedbackinterconnectionoftwosystems:ROCcontaining70Example10.20ConsiderthecausalLTIsystemwithsystemfunction

ThissystemcanalsobedescribedbythedifferenceequationBlockdiagramrepresentationofthecausalLTIsystemx[n]y[n]1/4

isthesystemfunctionofaunitdelayer.71Ifweusev[n]torepresenttheoutputofthefirstsubsystem,y[n]theoutputoftheoverallsystem,therelationshipbetweenthemisExample10.21ConsideracausalLTIsystemwithsystemfunctionBlockdiagramrepresentationforthesysteminExample10.20y[n]–2x[n]1/4v[n]72Example10.22Considerasecond-orderLTIsystemwithsystemfunction73Direct-formrepresentationforthefirstsystemx[n]1/8v[n]–1/474Direct-formrepresentationforthesysteminExample7.21x[n]1/8y[n]–1/2–1/4–7/4v[n]75Cascade-formrepresentationforthesysteminExample7.21x[n]–1/2

1/4y[n]1/4–276Parallel-formrepresentationforthesysteminExample7.21y[n]x[n]5/3–1/21/4–14/3477由LCCDE描述的LTI系統(tǒng),其系統(tǒng)函數(shù)為有理函數(shù),可將其因式分解或展開為部分分式。Thecascadeformandparallelformblock-diagramrepresentationsoftheLTIsystem:781.thecascadeformrepresentation:

其中是二階(或一階)系統(tǒng)函數(shù)。由此即可得系統(tǒng)的級(jí)聯(lián)型結(jié)構(gòu):將因式分解,在無重階零極點(diǎn)時(shí)可得N為偶數(shù)時(shí)79DDDDCascadeformoftheLTIsystem802.

Theparallelformrepresentation:

將展開為部分分式,在無重階極點(diǎn)時(shí)有N為偶數(shù)時(shí)81DDDDParallelformoftheLTIsystem82bilateral

z-transform:unilateral

z-transform:10.9.TheUnilateralz-Transform10.9.1

TheUnilateralz-TransformandInverseTransform83Thecalculationoftheinverseunilateralz-transformsisbasicallythesameasforbilateraltransforms,withtheconstraintthattheROCforaunilateraltransformmustalwaysbetheexteriorofacircle.Theunilateralz-transformdiffersfromthebilateraltransforminthatthesummationiscarriedoutonlyovernonnegativevaluesofn.Theunilateralz-transformofx[n]canbethoughtofasthebilateraltransformofx[n]u[n].Thebilateraltransformandtheunilateraltransformofacausalsignalareidentical.TheROCfortheunilateraltransformisalwaystheexteriorofacircle.84Example10.23ConsiderthesignalThebilateraltransformX(z)forthisexa

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論