中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專(zhuān)題1 一線三等角類(lèi)型問(wèn)題的探究 (含答案)_第1頁(yè)
中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專(zhuān)題1 一線三等角類(lèi)型問(wèn)題的探究 (含答案)_第2頁(yè)
中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專(zhuān)題1 一線三等角類(lèi)型問(wèn)題的探究 (含答案)_第3頁(yè)
中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專(zhuān)題1 一線三等角類(lèi)型問(wèn)題的探究 (含答案)_第4頁(yè)
中考數(shù)學(xué)二輪復(fù)習(xí)壓軸題培優(yōu)專(zhuān)題1 一線三等角類(lèi)型問(wèn)題的探究 (含答案)_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專(zhuān)題1一線三等角類(lèi)型問(wèn)題的探究題型剖析題型剖析如圖∠1=∠2=∠3,且它們的頂點(diǎn)在直線AB上,這就是一個(gè)一線三等角模型。模型分析:因?yàn)椤?=∠2=∠3,所以:∠ACE+∠AEC=∠CFB+∠BFC=∠ACE+∠BCF易得:∠ACE=∠CFB,∠AEC=∠FCB進(jìn)而有△AEC∽△BCF(這是相似三角形一個(gè)重要的判定,我們將在初三學(xué)習(xí)),如果再添加一組對(duì)應(yīng)邊相等,如CE=CF,或者是AE=BC,那么就有△AEC≌△BCF.1.題目中只要滿足“一線三等角”的條件,必相似;2.題目如果兩個(gè)條件:“一線三等角”和對(duì)應(yīng)邊相等的兩個(gè)條件,必全等。一線三等角類(lèi)型圖例剖析如圖1-1-1,∠ACB=∠D=∠E=90°,且∠CAB=45°SKIPIF1<0△ACD≌△CBE,此為“一線三直角”全等,又稱(chēng)“K字型”全等,適用于直角情況;如圖1-1-2,∠ACB=∠D=∠E=90°SKIPIF1<0△ACD∽△CBE,此為“一線三直角”相似,又稱(chēng)“K字型”相似,適用于直角;如圖1-1-2,∠ACB=∠D=∠E=90°SKIPIF1<0△ACD∽△CBE,此為“一線三直角”相似,又稱(chēng)“K字型”相似,適用于直角;4.如圖1-1-4,∠ACB=∠D=∠E=SKIPIF1<0°SKIPIF1<0△ACD∽△CBE,此為更一般的“一線三等角”適用于任何三角形.圖1-1-1圖1-1-2圖1-1-3圖1-1-4一線三等角構(gòu)造路線方式(一):構(gòu)造“一線三等角”1.45o角SKIPIF1<0構(gòu)等腰直角三角形SKIPIF1<0造“一線三直角”全等,如圖1-2-1;圖1-2-12.30o角SKIPIF1<0構(gòu)直角三角形SKIPIF1<0造“一線三直角”相似,如圖1-2-2;圖1-2-23.tanα=k→構(gòu)直角三角形→造“一線三直角”相似,如圖1-2-3;圖1-2-3圖1-2-3典例賞析典例賞析類(lèi)型一:一線三等角下的證明例1.(1)問(wèn)題:如圖1,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),∠DPC=∠A=∠B=90°,求證:AD?BC=AP?BP.(2)探究如圖2,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),當(dāng)∠DPC=∠A=∠B=θ時(shí),上述結(jié)論是否依然成立?說(shuō)明理由.(3)應(yīng)用:請(qǐng)利用(1)(2)獲得的經(jīng)驗(yàn)解決問(wèn)題:如圖3,在△ABD中,AB=6,AD=BD=5,點(diǎn)P以每秒1個(gè)單位長(zhǎng)度的速度,由點(diǎn)A出了,沿邊AB向點(diǎn)B運(yùn)動(dòng),且滿足∠DPC=∠A,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒),當(dāng)以D為圓心,以DC為半徑的圓與AB相切時(shí),求t的值.【分析】(1)如圖1,由∠DPC=∠A=∠B=90°可得∠ADP=∠BPC,即可證到△ADP∽△BPC,然后運(yùn)用相似三角形的性質(zhì)即可解決問(wèn)題;(2)如圖2,由∠DPC=∠A=∠B=θ可得∠ADP=∠BPC,即可證到△ADP∽△BPC,然后運(yùn)用相似三角形的性質(zhì)即可解決問(wèn)題;(3)如圖3,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E,根據(jù)等腰三角形的性質(zhì)可得AE=BE=3,根據(jù)勾股定理可得DE=4,由題可得DC=DE=4,則有BC=5-4=1.易證∠DPC=∠A=∠B.根據(jù)AD?BC=AP?BP,就可求出t的值.類(lèi)型二:一線三等角下的函數(shù)問(wèn)題2.已知:如圖,AB⊥BC,AD//BC,AB=3,AD=2.點(diǎn)P在線段AB上,聯(lián)結(jié)PD,過(guò)點(diǎn)D作PD的垂線,與BC相交于點(diǎn)C.設(shè)線段AP的長(zhǎng)為x.(1)當(dāng)AP=AD時(shí),求線段PC的長(zhǎng);(2)設(shè)△PDC的面積為y,求y關(guān)于x的函數(shù)解析式,并寫(xiě)出函數(shù)的定義域;(3)當(dāng)△APD∽△DPC時(shí),求線段BC的長(zhǎng).【分析】(1)求線段PC的長(zhǎng),根據(jù)已知條件過(guò)點(diǎn)C作CE⊥AD,交AD的延長(zhǎng)線于點(diǎn)E.AP=AD,PD⊥CD知道,可以先證明△APD∽△CDE,由比例關(guān)系式得出;(2)要求y與x之間的函數(shù)關(guān)系式,以及函數(shù)的定義域:根據(jù)實(shí)際情況證明△APD∽△CDE,根據(jù)相似三角形的性質(zhì)求出比例式,進(jìn)而得出y與x之間的函數(shù)關(guān)系式.專(zhuān)題訓(xùn)練1.如圖,已知反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)A(4,5),若在該圖象上有一點(diǎn)P,使得∠AOP=45°,則點(diǎn)P的坐標(biāo)是.2.已知:如圖,在△ABC中,AB=AC=13,BC=24,點(diǎn)P、D分別在邊BC、AC上,AP2=AD?AB,(1)求證:△ADP∽△APC;(2)求∠APD的正弦值.3.如圖3,已知拋物線與SKIPIF1<0軸交于SKIPIF1<0兩點(diǎn),點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,它與SKIPIF1<0軸交于SKIPIF1<0點(diǎn),點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,它對(duì)稱(chēng)軸是直線SKIPIF1<0.(1)求此拋物線的函數(shù)關(guān)系式;(2)若拋物線上有一點(diǎn)SKIPIF1<0,且SKIPIF1<0,求點(diǎn)SKIPIF1<0坐標(biāo).4.如圖,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0為SKIPIF1<0中點(diǎn),點(diǎn)SKIPIF1<0為邊SKIPIF1<0上一動(dòng)點(diǎn),點(diǎn)SKIPIF1<0為射線SKIPIF1<0上一動(dòng)點(diǎn),且SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),聯(lián)結(jié)SKIPIF1<0,求SKIPIF1<0的余切值;(2)當(dāng)點(diǎn)SKIPIF1<0在線段SKIPIF1<0上時(shí),設(shè)SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0關(guān)于SKIPIF1<0的函數(shù)關(guān)系式,并寫(xiě)出SKIPIF1<0的取值范圍;(3)聯(lián)結(jié)SKIPIF1<0,若SKIPIF1<0為等腰三角形,求SKIPIF1<0的長(zhǎng).5.如圖,△ABC和△DEF是兩個(gè)全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點(diǎn)E與△ABC的斜邊BC的中點(diǎn)重合.將△DEF繞點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中,線段DE與線段AB相交于點(diǎn)P,線段EF與射線CA相交于點(diǎn)Q.(1)如圖①,當(dāng)點(diǎn)Q在線段AC上,且AP=AQ時(shí),求證:△BPE≌△CQE;(2)如圖②,當(dāng)點(diǎn)Q在線段CA的延長(zhǎng)線上時(shí),求證:△BPE∽△CEQ;并求當(dāng)BP=a,CQ=時(shí),P、Q兩點(diǎn)間的距離(用含a的代數(shù)式表示).[來(lái)源:學(xué)+科+網(wǎng)]6.已知矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點(diǎn)B落在CD邊上的點(diǎn)P處.(1)如圖1,已知折痕與邊BC交于點(diǎn)O,連結(jié)AP,OP,OA,若PC=4,求邊AB的長(zhǎng);(2)如圖2,若點(diǎn)P恰好是邊CD的中點(diǎn),求∠AOB的度數(shù);(3)如圖3,在(1)的條件下,擦去折痕AO、線段OP,連接BP.動(dòng)點(diǎn)M在線段AP上(點(diǎn)M與點(diǎn)P、A不重合),動(dòng)點(diǎn)N在線段AB的延長(zhǎng)線上,且BN=PM,連接MN交PB于點(diǎn)F,作ME⊥BP于點(diǎn)E.試問(wèn)當(dāng)動(dòng)點(diǎn)M、N在移動(dòng)的過(guò)程中,線段EF的長(zhǎng)度是否發(fā)生變化?若變化,說(shuō)明理由.若不變,求線段EF的長(zhǎng)度.7.如圖,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點(diǎn)D是BC的中點(diǎn),點(diǎn)E是AB邊上的動(dòng)點(diǎn),SKIPIF1<0交射線AC于點(diǎn)F.(1)求AC和BC的長(zhǎng);(2分)(2)當(dāng)SKIPIF1<0∥SKIPIF1<0時(shí),求SKIPIF1<0的長(zhǎng);(5分)(3)聯(lián)結(jié)SKIPIF1<0,當(dāng)SKIPIF1<0和SKIPIF1<0相似時(shí),求SKIPIF1<0的長(zhǎng).(7分)[來(lái)源:學(xué)???。網(wǎng)Z。X。X。K]8.如圖,在△ABC,∠ACB=90°,AC=4,BC=3,O是AB上一點(diǎn),AO:OB=2:5.(1)如圖(1),求點(diǎn)O到AC的距離:(2)如圖(2),若P是邊AC上的一個(gè)動(dòng)點(diǎn),作PQ⊥OP交線段BC于點(diǎn)Q(點(diǎn)Q不與點(diǎn)B、C重合).①若△AOP∽△PCQ,求AP的長(zhǎng);②設(shè)AP=x,CQ=y,求y關(guān)于x的函數(shù)解析式.并寫(xiě)出函數(shù)定義域;③當(dāng)△OPQ∽△CPQ時(shí),求AP長(zhǎng).參考答案例1.(1)如圖1.∵∠DPC=∠A=∠B=90°,∴∠ADP+∠APD=90°,∠BPC+∠APD=90°.∴∠ADP=∠BPC.∴△ADP∽△BPC.∴SKIPIF1<0=SKIPIF1<0.∴AD?BC=AP?BP;(2)結(jié)論AD?BC=AP?BP仍然成立,理由如下:∵∠BPD=∠DPC+∠BPC,∠BPD=∠A+∠ADP,∴∠DPC+∠BPC=∠A+∠ADP.∵∠DPC=∠A=∠B=θ,∴∠BPC=∠ADP.∴△ADP∽△BPC.∴SKIPIF1<0=SKIPIF1<0.∴AD?BC=AP?BP;(3)如圖3,過(guò)點(diǎn)D作DE⊥AB于點(diǎn)E.∵AD=BD=5,AB=6,∴AE=BE=3.由勾股定理可得DE=4.∵以點(diǎn)D為圓心,DC為半徑的圓與AB相切,∴DC=DE=4.∴BC=5-4=1.又∵AD=BD,∴∠A=∠B.∴∠DPC=∠A=∠B.由(1),(2)的經(jīng)驗(yàn)可知AD?BC=AP?BP.∴5×1=t(6-t).解得t1=1,t2=5,∴t的值為1秒或5秒.例2.解答:(1)過(guò)點(diǎn)C作CE⊥AD,交AD的延長(zhǎng)線于點(diǎn)E.∵AB⊥BC,CE⊥AD,PD⊥CD,AD//BC,∴∠ABC=∠AEC=∠PDC=90°,CE=AB=3.∵AD//BC,∴∠A+∠ABC=180°.即得∠A=90°.又∵∠ADC=∠DCE+∠DEC,∠ADC=∠ADP+∠PDC,∴∠ADP=∠DCE.又由∠A=∠DEC=90°,得△APD∽△DCE.∴SKIPIF1<0.于是,由AP=AD=2,得DE=CE=3.在Rt△APD和Rt△DCE中,得SKIPIF1<0,SKIPIF1<0.于是,在Rt△PDC中,得SKIPIF1<0.(2)在Rt△APD中,由AD=2,AP=x,得SKIPIF1<0.∵△APD∽△DCE,∴SKIPIF1<0.∴SKIPIF1<0.在Rt△PCD中,SKIPIF1<0.∴所求函數(shù)解析式為SKIPIF1<0.函數(shù)的定義域?yàn)?<x≤3.(3)當(dāng)△APD∽△DPC時(shí),即得△APD∽△DPC∽△DCE.根據(jù)題意,當(dāng)△APD∽△DPC時(shí),有下列兩種情況:(?。┊?dāng)點(diǎn)P與點(diǎn)B不重合時(shí),可知∠APD=∠DPC.由△APD∽△DCE,得SKIPIF1<0.即得SKIPIF1<0.由△APD∽△DPC,得SKIPIF1<0.∴SKIPIF1<0.即得DE=AD=2.∴AE=4.易證得四邊形ABCE是矩形,∴BC=AE=4.(ⅱ)當(dāng)點(diǎn)P與點(diǎn)B重合時(shí),可知∠ABD=∠DBC.在Rt△ABD中,由AD=2,AB=3,得SKIPIF1<0.由△ABD∽△DBC,得SKIPIF1<0.即得SKIPIF1<0.解得SKIPIF1<0.∴△APD∽△DPC時(shí),線段BC的長(zhǎng)分別為4或SKIPIF1<0.專(zhuān)題訓(xùn)練1.解:如圖,作AE⊥y軸于E,將線段OA繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到OA′,作A′F⊥x軸于F,則△AOE≌△A′OF,可得OF=OE=5,A′F=AE=4,即A′(5,﹣4).∵反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)A(4,5),所以由勾股定理可知:OA==,∴k=4×5=20,∴y=,∴AA′的中點(diǎn)K(,),∴直線OK的解析式為y=x,由,解得或,∵點(diǎn)P在第一象限,∴P(6,),故答案為(6,).2.(1)證明:∵AP2=AD?AB,AB=AC,∴AP2=AD?AC,,∵∠PAD=∠CAP,∴△ADP∽△APC,(2)解:∵△ADP∽△APC,∴∠APD=∠ACB,作AE⊥BC于E,如圖所示:∵AB=AC,∴CE=×24=12,∴AE==5,∴sin∠APD=sin∠ACB=,3.解答.第(1)題易得此拋物線的函數(shù)關(guān)系式為:SKIPIF1<0.第(2)題,我們可以從原圖中直接得出基本模型如圖4,易證SKIPIF1<0,所以SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,∴點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0.將其代入拋物線的函數(shù)關(guān)系式,得SKIPIF1<0.解得SKIPIF1<0(舍),∴點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0.4.解答:(1)∴SKIPIF1<0,∠SKIPIF1<0°∴SKIPIF1<0∵SKIPIF1<0∥SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0中,SKIPIF1<0CCDABFEH(2)過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0SKIPIF1<0于點(diǎn)SKIPIF1<0可求得SKIPIF1<0∴SKIPIF1<0又可證SKIPIF1<0∽SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0SKIPIF1<0(3)∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0∴若SKIPIF1<0為等腰三角形,只有SKIPIF1<0或SKIPIF1<0兩種可能.當(dāng)SKIPIF1<0時(shí),點(diǎn)SKIPIF1<0在邊SKIPIF1<0上,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0⊥SKIPIF1<0于點(diǎn)SKIPIF1<0(如圖①)可得:SKIPIF1<0,即點(diǎn)SKIPIF1<0在SKIPIF1<0中點(diǎn)∴此時(shí)SKIPIF1<0與SKIPIF1<0重合∴SKIPIF1<0當(dāng)SKIPIF1<0時(shí),點(diǎn)SKIPIF1<0在SKIPIF1<0的延長(zhǎng)線上,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0⊥SKIPIF1<0于點(diǎn)SKIPIF1<0(如圖②)可證:△SKIPIF1<0∽△SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0綜上所述,SKIPIF1<0為6或7.5.(1)證明:∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中點(diǎn),∴BE=CE,在△BPE和△CQE中,∵,∴△BPE≌△CQE(SAS);(2)解:連接PQ,∵△ABC和△DEF是兩個(gè)全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∴△BPE∽△CEQ,∴,∵BP=a,CQ=a,BE=CE,∴,∴BE=CE=a,∴BC=3a,∴AB=AC=BC?sin45°=3a,∴AQ=CQ﹣AC=a,PA=AB﹣BP=2a,在Rt△APQ中,PQ==a.6.解:(1)如圖1,設(shè)AB=x,則PD=x﹣4,AP=AB=x,由勾股定理得:82+(x﹣4)2=x2,解得:x=10,∴AB=10;(2)如圖2,∵P是DC的中點(diǎn),∴PD=DC,∵四邊形ABCD為矩形,∴AB=CD,∠D=90°,由折疊得:AB=AP,∠PAO=∠BAO,∴PD=AP,∴∠DAP=30°,∵∠DAB=90°,∴∠PAO=∠BAO=(90°﹣30°)=30°,∵∠B=90°,∴∠AOB=90°﹣30°=60°;(3)如圖3,過(guò)M作MQ∥AN,交PB于Q,則∠ABP=∠MQP,∵AP=AB,∴∠APB=∠ABP,∴∠APB=∠MQP,∴MP=MQ,∵M(jìn)E⊥PQ,∴PE=EQ=PQ,∵BN=MP,MP=MQ,∴BN=MQ,∵M(jìn)Q∥AN,∴∠QMF=∠BNF,∵∠MFQ=∠NFB,∴△MQF≌△NBF,∴QF=BF,∴QF=QB,∴EF=EQ+QF=PQ+QB=PB,由(1)得:PB===4,∴EF=×=2,∴在(1)的條件下,當(dāng)動(dòng)點(diǎn)M、N在移動(dòng)的過(guò)程中,線段EF的長(zhǎng)度不變,長(zhǎng)度為2.7.(1)在SKIPIF1<0中,SKIPIF1<0∵SKIPIF1<0,∴設(shè)SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0(2)過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0,垂足為SKIPIF1<0.易得SKIPIF1<0∽SKIPIF1<0設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0∵SKIPIF1<0∥SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0∽SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0即SKIPIF1<0化簡(jiǎn),得SKIPIF1<0解得SKIPIF1<0(負(fù)值舍去)∴SKIPIF1<0(3)過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0,垂足為SKIPIF1<0.易得SKIPIF1<0∽SKIPIF1<0設(shè)SKIPIF1<0,SKIPIF1<0∵SKIPIF1<0SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0∽SKIPIF1<0∴SKIPIF1<0當(dāng)SKIPIF1<0和SKIPIF1<

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論