高二數(shù)學選修三各章節(jié)的知識點總結(jié)歸納_第1頁
高二數(shù)學選修三各章節(jié)的知識點總結(jié)歸納_第2頁
高二數(shù)學選修三各章節(jié)的知識點總結(jié)歸納_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

高二數(shù)學選修三各章節(jié)的知識點總結(jié)歸納高二數(shù)學選修三各章節(jié)的知識點總結(jié)1一、映射與函數(shù):(1)映射的概念:(2)一一映射:(3)函數(shù)的概念:二、函數(shù)的三要素:相同函數(shù)的判斷:①對應(yīng)法則;②定義域(兩點必須同時具備)(1)函數(shù)解析式的求法:①定義法(拼湊):②換元法:③待定系數(shù)法:④賦值法:(2)函數(shù)定義域的求法:①含參問題的定義域要分類討論;②對于實際問題,在求出函數(shù)解析式后;必須求出其定義域,此時的定義域要根據(jù)實際意義來確定。(3)函數(shù)值域的求法:①配方法:轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來求值;常轉(zhuǎn)化為型如:的形式;②逆求法(反求法):通過反解,用來表示,再由的取值范圍,通過解不等式,得出的取值范圍;常用來解,型如:;④換元法:通過變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;⑤三角有界法:轉(zhuǎn)化為只含正弦、余弦的函數(shù),運用三角函數(shù)有界性來求值域;⑥基本不等式法:轉(zhuǎn)化成型如:,利用平均值不等式公式來求值域;⑦單調(diào)性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的單調(diào)性求值域。⑧數(shù)形結(jié)合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來求值域。高二數(shù)學選修三各章節(jié)的知識點總結(jié)2一、直線與方程(1)直線的傾斜角定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°(2)直線的斜率①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當時,當時,當時,不存在。②過兩點的直線的斜率公式:注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;(2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。(3)直線方程①點斜式:直線斜率k,且過點注意:當直線的斜率為0°時,k=0,直線的方程是y=y1.當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1.②斜截式:,直線斜率為k,直線在y軸上的截距為b③兩點式:()直線兩點,④截矩式:其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為。⑤一般式:(A,B不全為0)⑤一般式:(A,B不全為0)注意:○1各式的適用范圍○2特殊的方程如:平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));(4)直線系方程:即具有某一共同性質(zhì)的直線(一)平行直線系平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))(二)過定點的直線系(ⅰ)斜率為k的直線系:,直線過定點;(ⅱ)過兩條直線,的交點的直線系方程為(為參數(shù)),其中直線不在直線系中。(5)兩直線平行與垂直當,時,注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。(6)兩條直線的交點相交:交點坐標即方程組的一組解。方程組無解;方程組有無數(shù)解與重合(7)兩點間距離公式:設(shè)是平面直角坐標系中的兩個點,則(8)點到直線距離公式:一點到直線的距離(9)兩平行直線距離公式:在任一直線上任取一點,再轉(zhuǎn)化為點到直線的距離進行求解。高二數(shù)學選修三各章節(jié)的知識點總結(jié)3函數(shù)圖像變換:(重點)要求掌握常見基本函數(shù)的圖像,掌握函數(shù)圖像變換的一般規(guī)律。常見圖像變化規(guī)律:(注意平移變化能夠用向量的語言解釋,和按向量平移聯(lián)系起來思考)平移變換y=f(x)→y=f(x+a),y=f(x)+b注意:(ⅰ)有系數(shù),要先提取系數(shù)。如:把函數(shù)y=f(2x)經(jīng)過平移得到函數(shù)y=f(2x+4)的圖象。(ⅱ)會結(jié)合向量的平移,理解按照向量(m,n)平移的意義。對稱變換y=f(x)→y=f(-x),關(guān)于y軸對稱y=f(x)→y=-f(x),關(guān)于x軸對稱y=f(x)→y=f|x|,把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對稱y=f(x)→y=|f(x)|把y

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論