熱能畢業(yè)設(shè)計(jì)外文文獻(xiàn)及翻譯-用于分析在直燃式步進(jìn)式加熱爐_第1頁
熱能畢業(yè)設(shè)計(jì)外文文獻(xiàn)及翻譯-用于分析在直燃式步進(jìn)式加熱爐_第2頁
熱能畢業(yè)設(shè)計(jì)外文文獻(xiàn)及翻譯-用于分析在直燃式步進(jìn)式加熱爐_第3頁
熱能畢業(yè)設(shè)計(jì)外文文獻(xiàn)及翻譯-用于分析在直燃式步進(jìn)式加熱爐_第4頁
熱能畢業(yè)設(shè)計(jì)外文文獻(xiàn)及翻譯-用于分析在直燃式步進(jìn)式加熱爐_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

用于分析在直燃式步進(jìn)式加熱爐板坯瞬態(tài)加熱的傳熱模型摘要一個(gè)可以預(yù)測板坯表面溫度分布和熱流情況的數(shù)學(xué)傳熱模型已開發(fā)出來了,主要是通過充分考慮在爐膛內(nèi)的板坯的熱輻射和瞬態(tài)熱傳導(dǎo)方程來實(shí)現(xiàn)的。該爐型是參照散熱介質(zhì)在空間中的變恒溫過程和恒定的吸收系數(shù)來設(shè)計(jì)的。鋼坯由步進(jìn)梁從一個(gè)固定梁移動(dòng)到下一個(gè)固定梁上,是以通過加熱爐預(yù)熱段.加熱段和均熱段為鋼坯熱傳導(dǎo)方程的邊界條件的加熱爐模型。輻射熱通量的計(jì)算是通過采用有限體積法,在爐子的內(nèi)部,以爐墻.爐頂.爐底構(gòu)成的充滿煙氣的環(huán)境里,作為板坯的瞬態(tài)傳導(dǎo)方程的邊界條件來進(jìn)行計(jì)算的。板坯的傳熱特性和溫度特性是通過調(diào)查可以改變板坯吸收系數(shù)和發(fā)射率的參數(shù)來確定的。比較多次的實(shí)踐工作表明,目前用于預(yù)測板坯在加熱爐中的傳熱過程和熱流量的狀況示范工程得到了很好的效果。

關(guān)鍵詞:加熱爐;鋼坯加熱;輻射傳熱;瞬態(tài)熱傳導(dǎo);有限體積法

1導(dǎo)言在過去數(shù)十年以來,爐子進(jìn)入降低能源消耗和污染物排放量的階段,而分析鋼坯瞬態(tài)熱特性,在加熱爐工程應(yīng)用上已吸引了相當(dāng)多注意。此外,限定板坯在爐子內(nèi)有均勻的溫度分布才能出爐的重要性大大增加了,只有準(zhǔn)確、快速的預(yù)測爐內(nèi)板坯的溫度,才能為以后的軋制過程提供比較好的原料,因?yàn)檫@決定了鋼鐵產(chǎn)品質(zhì)量的高低。在本質(zhì)上,在爐膛內(nèi)的整個(gè)燃燒過程和由此產(chǎn)生的熱氣流同時(shí)影響傳熱.對流和熱輻射過程。然而,復(fù)雜的爐子內(nèi)部的三維結(jié)構(gòu)包括固定梁和步行梁打滑問題使的難以在經(jīng)濟(jì)上做出準(zhǔn)確的分析。因此,模型和方法對于預(yù)測爐子內(nèi)部燃燒特性和傳熱過程中存在著很高的要求。尤其是,準(zhǔn)確預(yù)測熱輻射量是最重要的,因?yàn)闊彷椛鋫鳠岢^流過板坯表面總熱流的90%。

現(xiàn)在沒有一個(gè)單一的輻射模型就能夠解決所有在工程應(yīng)用中遇到的情況,所以應(yīng)選擇一個(gè)合適的途徑為自己的側(cè)重點(diǎn)。為了預(yù)測通過板坯表面上的輻射熱通量,從而準(zhǔn)確計(jì)算出爐子內(nèi)板坯的溫度分布,其解決方法是板坯必須是做連續(xù)運(yùn)動(dòng),無灰的燃燒煙氣作為該爐輻射氣體,以及復(fù)雜的爐壁幾何結(jié)構(gòu)包括彎曲的板坯和防滑管道堵塞的影響,還有就是一定量的計(jì)算。許多可以預(yù)測在加熱爐內(nèi)板坯傳熱特性的模型和方法已經(jīng)開發(fā)出來了,并且成功的應(yīng)用到各種不同的爐型中,這些方法可以歸類為下面幾類:第一個(gè)是要解決好控制熱氣體流動(dòng)和燃燒過程的節(jié)能方程,把熱輻射作為輻射熱流的能源來源,金大中等人完成了這些三維傳熱特性的分析,主要是考慮到煙氣在步進(jìn)梁上鋼坯的湍流.平流和輻射傳熱作用,并用簡潔的FLUENT代碼表示出來。同時(shí)可以預(yù)測爐子內(nèi)部的鋼坯的溫度分布和鋼坯上下表面流過的熱流量。金正日等人進(jìn)行了類似的分析,并且做了預(yù)測鋼坯順態(tài)傳熱性能的熱傳導(dǎo)方程。雖然這些都是流體力學(xué)計(jì)算分析,但是可以用于準(zhǔn)確地預(yù)測傳熱和燃燒的特點(diǎn)。在爐子內(nèi)部鋼坯的加熱存在著這樣的困難,因?yàn)樘幚砟敲炊嗟姆匠毯蛷?fù)雜的窯爐結(jié)構(gòu),以及不確定的模式,因而要求進(jìn)行長期的監(jiān)測計(jì)算和由此產(chǎn)生的費(fèi)用。第二種方法是把加熱爐分成幾段爐氣成分和性質(zhì)相同的部分,再用由查仆曼等人提出的一維氣體能量平衡進(jìn)行分析。他們想通過實(shí)驗(yàn)參數(shù)的觀察,找出影響加熱爐內(nèi)鋼坯及耐火墻輻射和燃燒空間高度,以及傳熱性能的因素。雖然沒有什么結(jié)果,但是,進(jìn)行了有關(guān)鋼坯溫度分布的預(yù)測,并且進(jìn)行了一些需要處理極其復(fù)雜的步進(jìn)式加熱爐的集合特性修改審議工作。最后比較前面一種方法,這種辦法很簡單,可以合理的模擬出鋼坯的熱量分布狀況,且把重點(diǎn)放在分析關(guān)于氣體輻射傳熱和鋼坯內(nèi)部瞬態(tài)傳導(dǎo)上,資料五的作者研究的穩(wěn)態(tài)傳熱模型,在用這個(gè)模型時(shí),爐子內(nèi)的熱輻射計(jì)算用分區(qū)計(jì)算的方法,而鋼坯的熱反應(yīng)可以通過解析瞬態(tài)二維熱傳導(dǎo)方程來獲得。以筆者的了解,用分區(qū)計(jì)算法計(jì)算工程的成本,以及處理復(fù)雜的加熱爐結(jié)構(gòu)因素還是有一定難度的。而資料6的作者也開發(fā)了類似的預(yù)測爐子內(nèi)部的傳熱模型,爐氣充滿爐內(nèi)空腔,在爐墻和防滑管道上,以板坯在爐子內(nèi)前進(jìn)的方向?yàn)榛鶞?zhǔn)的橫向二維穩(wěn)態(tài)傳熱為研究重點(diǎn)。而比起前一種方法,這種方法更加的簡單,減少了我們計(jì)算所需要的時(shí)間。對于更普通的和計(jì)算效率更加高的模型,就提出了更高的要求,為快速而準(zhǔn)確的預(yù)測鋼坯內(nèi)部的溫度分布,如果考慮到有用聯(lián)合模式,及監(jiān)測和控制爐子內(nèi)情況,就像是控制燃燒器和板坯停留在爐子內(nèi)的時(shí)間的實(shí)時(shí)操作。

最近,巴西和杜塔[7]介紹了一種在直燃型推鋼式加熱爐,采用有限體積法計(jì)算傳熱輻射的模型。在這項(xiàng)工作中,預(yù)測爐內(nèi)的流過板坯表面熱通量和鋼坯內(nèi)溫度分布的數(shù)學(xué)傳熱模型已經(jīng)研制成功,在板坯在步進(jìn)式加熱爐中,通過分別考慮在爐膛內(nèi)熱輻射和瞬態(tài)傳導(dǎo)方程來實(shí)現(xiàn)。該爐是仿照關(guān)于輻射介質(zhì)在空間中線性變溫和恒定吸收系數(shù)來設(shè)計(jì)的。板坯是由步進(jìn)梁傳送的,由步進(jìn)梁定期運(yùn)送通過預(yù)熱段.加熱段和均熱段。輻射熱通量計(jì)算采用有限體積法以輻射熱交換與爐膛輻射效果,爐墻,爐頂,和燃燒氣體適用瞬態(tài)熱傳導(dǎo)方程的邊界條件計(jì)算的。在以下幾節(jié)描述后,這里預(yù)測爐過程與加熱爐所采用的方法是,查找鋼坯傳熱性能和熱通量,通過改變板坯的吸收系數(shù)和發(fā)射率等參數(shù),而還介紹了與實(shí)踐數(shù)據(jù)的比較。最后,作出有一些結(jié)論性意見的適當(dāng)?shù)慕忉尅?/p>

2制定

2.1爐子說明

加熱爐的任務(wù)是為隨后的軋制過程將鋼坯加熱到將近,為加熱鋼坯所消耗的能源,由頂部和底部的煤氣燒嘴提供的。通常情況下,將加熱爐分成5個(gè)區(qū)域,排煙區(qū),換熱區(qū),預(yù)熱段,加熱段和均熱段,如圖表1顯示。這是浦項(xiàng)制鐵公司的簡化爐模型。鋼坯由步進(jìn)梁從一個(gè)固定梁移動(dòng)到下一個(gè)固定梁上,步進(jìn)梁大約一分鐘移動(dòng)一次,看板坯在爐子內(nèi)部停留時(shí)間來決定的。總的爐子長度規(guī)定為39.2米,而爐膛高度是變化的,每一個(gè)區(qū)用傾斜屋頂連接。每個(gè)鋼板是長1.16米,厚度是0.23米,鋼坯之間的間距是0.2米。因此,在目前爐存在著共計(jì)28鋼坯。該鋼坯被假定為溫度時(shí)被送入爐內(nèi)。板坯停留時(shí)間,即從預(yù)熱段入口到均熱段的出口為止,經(jīng)過180分鐘的加熱,在爐膛出口板坯獲得平均溫度約,因此,鋼坯每4.6分鐘就移動(dòng)一次。2.2方程

如圖2顯示了發(fā)生在爐膛內(nèi)部傳熱過程,在這項(xiàng)研究中,假定向板坯表面熱傳遞模式只有熱輻射傳熱。鋼板內(nèi)部傳熱可以用瞬態(tài)二維熱傳導(dǎo)方程計(jì)算出來,及公式一。其中,C和K分別為密度,比熱,該鋼板的導(dǎo)電性。(1)(2)(3)(4)通過該板坯表面輻射熱通量,在圖三中已經(jīng)顯示出來了,是用來作為上述方程(1)的邊界條件,其中是鋼坯表面和方向的輻射強(qiáng)度。是在板坯表面正常的單位向量,是立體角。是活性輻射介質(zhì)輻射在任何方向的強(qiáng)度,沿著路徑通過介質(zhì)的吸收,發(fā)射和散射可以確定以下方程(3),是吸收光系數(shù),是散射反照率,是從傳入方向向方向散射的散射系數(shù),這個(gè)等式,如果平均溫度和邊界條件強(qiáng)度給出,提供了一個(gè)輻射強(qiáng)度分布情況等。一個(gè)漫反射與溫度,這是方程邊界條件。那么方程(3)可表示為發(fā)射量和反射量的總和,如方程(4),其中是爐墻的發(fā)射率,而是黑體強(qiáng)度的墻上。

2.3有限體積的解決方法

瞬態(tài)熱傳導(dǎo)方程是由帕坦卡[8]所建議的使用有限體積法的離散型程序。一個(gè)中心差分法用于在X和Y方向擴(kuò)散的條件。由此產(chǎn)生的離散系統(tǒng),然后反復(fù)使用TDMA的算法來解決,直到溫度場的板坯滿足下列收斂準(zhǔn)則可使用德國馬克瓦特的定向量來預(yù)測如下:為獲板坯每個(gè)時(shí)間的溫度,計(jì)算從熱輻射開始,在加熱爐商會(huì)給予的對每個(gè)板坯表面輻射熱通量,然后,板坯的熱傳導(dǎo)是順序模擬從第一到最后第二十八板坯。這一計(jì)算回路重復(fù),直到板坯由一個(gè)步進(jìn)梁移動(dòng)到下一固定梁,上述計(jì)算程序是顯示在該地點(diǎn)最初的板坯溫度進(jìn)行計(jì)算的。這些計(jì)算程序終止時(shí),它成為該板坯在加熱爐內(nèi)停留的時(shí)間。一個(gè)控制角度給定,但允許它的方向能夠變化,可以得到下列等式:(6)(7)(8)(9)(10)(11)其中和分別是表面單元的外法線量。下流節(jié)點(diǎn)強(qiáng)度等于上游節(jié)點(diǎn)強(qiáng)度這是已采納的步驟。離散化過程和有關(guān)量很容易找到在Baek等人的文獻(xiàn)中。如在爐內(nèi)板坯和在底部爐壁塊的這些區(qū)域存在溶液,比如圖4a的點(diǎn)B,Chai等人建議關(guān)閉程序。公式10可以被采納。在這種解決辦法中,雖然計(jì)算在整個(gè)域完成,在活躍的地區(qū)這種唯一的解決辦法是有意義的。為了解釋閉式的解決辦法,一個(gè)額外的項(xiàng)被帶入公式6,如下式12。(12)對于在非活躍區(qū)域的單元,變?yōu)楹停ㄟ@里L(fēng)N是一個(gè)非常大的數(shù),比如,然而在活躍區(qū)域和都設(shè)定為相同的零值。對于直接接觸的的活躍單元,例如圖4a的W點(diǎn),受到下列條件的限制:(13)(14)最終,公式8和9的系數(shù)被改變?nèi)缦拢?15)(16)當(dāng)下面值收斂時(shí),迭代求解過程終止。(17)這里是以前的迭代值。一旦獲得強(qiáng)度場,在公式2中的板坯表面熱輻射流量可以被測得通過使用方向權(quán)重如下式:(18)在每個(gè)時(shí)間段若想要獲得每個(gè)板坯的溫度,計(jì)算就要從爐腔體的熱腐蝕開始。然后板坯內(nèi)部的熱傳導(dǎo)從模擬的第一塊到最后的第28塊進(jìn)行。這種計(jì)算循環(huán)往復(fù),直到板坯通過一個(gè)步進(jìn)梁移動(dòng)到下一個(gè)固定的光束上,上述的計(jì)算過程通過之前計(jì)算過的一位置點(diǎn)的初始板坯溫度進(jìn)行。當(dāng)值變?yōu)榘迮髟跔t內(nèi)的停留時(shí)間時(shí)這些計(jì)算程序被終止。3結(jié)果與討論

3.1熱行為爐進(jìn)程

加熱爐傳熱與熱輻射模型,上述應(yīng)用于調(diào)查鋼坯在爐膛內(nèi)瞬態(tài)熱傳導(dǎo)和通過鋼坯上下表面的熱流量,特別是著眼于每一個(gè)板坯表面溫度分布和對板坯表面輻射熱流上。在模型五中的加熱爐類似于浦項(xiàng)制鐵公司的加熱爐。該爐墻和氣體溫度模擬概況分別作列于表1,板坯的熱性能在表2中給出了。基本的輻射特性,如輻射氣體的吸收系數(shù),該爐墻的輻射系數(shù)分別設(shè)置為0.75和0.5,雖然是假設(shè)沒有散射,即,因此,。空間網(wǎng)格系統(tǒng)使用在這項(xiàng)研究是和角系統(tǒng)對。所有計(jì)算是在運(yùn)行頻率1.7兆赫的個(gè)人電腦進(jìn)行的,并要求計(jì)算時(shí)間大約是1260秒。圖5說明共計(jì)28磚的溫度分布和五區(qū)的爐溫見表1。第一塊板坯以移動(dòng)到預(yù)熱段,受到周邊熱爐氣體和爐墻的強(qiáng)烈的熱輻射,因?yàn)橹鴥烧咧g有著較高的溫度差。然后在右上角地區(qū)的板坯被加熱至最高溫度。正如所料,鋼坯通過預(yù)熱段的預(yù)熱后,移動(dòng)到加熱段,在加熱段內(nèi)被加熱到。不過板坯的溫度,在移動(dòng)到均熱段后稍微的有所下降。圖5b顯示了爐子內(nèi)部的熱輻射分布情況,即輻射熱通量(矢量)和輻射(輪廓)。請注意,在前面的兩個(gè)區(qū)的板坯輻射熱流向量都集中在位于爐膛高度中心的位置上,這意味著大量的熱氣題集中在爐子的高度中心空間附近。通過相鄰預(yù)熱和加熱區(qū),鋼坯得到了充分的加熱,溫度峰值出現(xiàn)在加熱區(qū)。在另一方面,在最后的均熱段,因?yàn)闋t溫是稍微下跌了約,比前面的加熱段,板坯是在高溫下幾乎到了高爐煤氣的溫度,一些輻射熱通量是從熱軋板釋放出來的,在以前的情況來說這是相反的情況。因此,鋼坯的溫度是略有降低,板坯內(nèi)部溫度梯度變小。

上文提到的爐膛內(nèi)部傳熱的詳細(xì)狀況可以在圖表6中得到了解,每一部分鋼坯的熱流通量和溫度等溫線都有說明。在這里,輻射熱通量矢量方向的確定,以查看是否有凈熱流進(jìn)入或流出板坯表面。在圖6中第一塊鋼坯,是在加熱爐的入口處,因此,左方熱通量向量沒有。隨著熱量傳遞到鋼坯的右邊,由于鋼坯被爐子內(nèi)部的熱氣體包圍著,更多的熱量傳遞到了鋼坯的上下表面。同時(shí)我們也應(yīng)該注意到,在右邊的角落,熱通量是來自水平和垂直兩個(gè)方向的,因而正如預(yù)期的那樣,最高氣溫形成在鋼坯的右角的地方,而最低氣溫是發(fā)現(xiàn)在板坯的左邊中心位置上。在另一方面,雖然第三塊板坯在圖6中是同樣是在預(yù)熱段,更多的對板坯表面的熱量通量影響是來自爐膛及爐墻,因?yàn)楸绕鸬谝粔K鋼坯來說,更加的深入到預(yù)熱段的內(nèi)部,接近加熱段。因此,板坯的溫度身高的比較快,最高的溫度達(dá)到,而最低氣溫也增加至。不過,迄今為止,板坯溫度分布顯示為夏普梯度。在圖表6c中的第七塊鋼坯已經(jīng)進(jìn)入到加熱段了,由于板坯從預(yù)熱段移動(dòng)過來,那里的板坯溫度介于和。但是,由于地磚充分加熱,從而板坯和周邊爐氣和爐墻溫差變小,熱流量降低的餓幅度在圖表6d中很明顯的看出來。同樣的原因,在加熱段內(nèi)第17板坯熱流跌幅更大,如圖6E中所示,因此,板坯溫升減弱,溫度分布更均勻。圖表6f說明第26塊板坯在均熱段內(nèi),那里的溫度,相比加熱段降低的幅度更加大。因此,我們可以看到,從加熱段到均熱段,爐墻和周圍熱煙氣對鋼坯的影響或多或少都在減弱。此外,如圖表7所示,預(yù)測板坯在爐膛內(nèi)沿縱向溫度概況,,和粉筆指上表面平均溫度的,板坯中心線溫度,和板坯表面降低的溫度幅度。我們可以看到中心線溫度呈線性變化的規(guī)律,開始是,通過第一個(gè)區(qū)域后,從升高到。在最后的均熱段,氣溫略有降低,仍幾乎恒定在約左右。至于上游較低的表面溫度,雖然上層溫度稍低于預(yù)熱段,因?yàn)檩^低的爐墻溫度,而后加熱段的溫度發(fā)生逆轉(zhuǎn)和上層溫度較高,因?yàn)榇嬖谥鴥蓚€(gè)低溫區(qū)。與此相反,在均熱段,由于上述回?zé)崃飨卤砻鏈囟冗h(yuǎn)低于中線溫度。

3.2吸收系數(shù)及平板輻射效果

在高溫加熱爐內(nèi),輻射傳熱是煙氣和爐墻主導(dǎo)傳熱模式。在這里尋找影響輻射特性效應(yīng)的一些參數(shù)進(jìn)行研究。圖8顯示介質(zhì)吸收系數(shù)對該板坯縱向溫度剖面中心線溫度效果影響,板坯中心線溫度加吸收系數(shù)從0.1增加到10。這是因?yàn)橹車橘|(zhì)吸收系數(shù)的增加熱輻射也增強(qiáng)了。接著,在圖9對板坯發(fā)射率與溫度剖面介紹,板坯發(fā)射率是各不相同的,從0.3到1.0,而吸收系數(shù)和爐壁輻射率均保持在0.15和0.75之間。正如人們預(yù)料的,溫度越高,板坯的發(fā)射率就越大,因?yàn)樵诎迮鞅砻嫔嫌捎谧兂珊谏玫礁嗟臒崃俊2贿^應(yīng)該指出,目前雖然在一些爐子上的到很好的體現(xiàn),我想最后的出口溫度,是在相對狹窄的范圍內(nèi)。3.3對比實(shí)驗(yàn)數(shù)據(jù)

最后,浦項(xiàng)制鐵在預(yù)測板坯溫度上利用現(xiàn)有的模型和實(shí)驗(yàn)數(shù)據(jù)進(jìn)行比較,如圖表10所示。在這些數(shù)據(jù)中,在原位測量降低爐區(qū)平均溫度,這就得到了5個(gè)設(shè)在板坯上方和下方的熱電偶選定的位置的數(shù)據(jù),還介紹了與板坯中心線溫度實(shí)驗(yàn)數(shù)據(jù)。為了預(yù)測板坯的溫度,在圖10原位測量溫度顯示,是介質(zhì)溫度和爐墻和樓板輻射系數(shù)維持在0.75和0.5。此外,在吸收系數(shù)中,在他的模型[13]的基礎(chǔ)上,通過實(shí)驗(yàn)獲得的和的摩爾分?jǐn)?shù)。值得注意的是,盡管各種測量結(jié)果的不確定性也存在著一個(gè)合理的預(yù)測結(jié)果與實(shí)測概況。尤其是,在均熱段,即出口附近,溫度預(yù)測已經(jīng)有了很好的效果,這意味著目前的傳熱模型,可被成功地應(yīng)用到預(yù)報(bào)步進(jìn)式加熱爐內(nèi)板坯溫度上。

4結(jié)論

傳熱模型和應(yīng)用已變?yōu)閭鳠釥顩r的預(yù)測,在五年中,浦項(xiàng)鋼鐵公司也研發(fā)了相似的加熱爐模型。在原來的基礎(chǔ)上,給出了縱向爐氣體和壁面溫度,該模型可以預(yù)測板坯在加熱過程中的輻射熱流量和板坯表面溫度分布,由耦合的RTE和瞬態(tài)熱傳導(dǎo)方程求解。雖然數(shù)值結(jié)果在為具體的例子審議中,同樣的方法,可用于任何類似的加熱爐模型。進(jìn)一步發(fā)展本模型的目標(biāo)將包括適當(dāng)為分析防滑標(biāo)準(zhǔn)的形成,燃?xì)饧皦囟确植?。最后,發(fā)展為三維傳熱模型。鳴謝作者表示感謝財(cái)政支持由浦項(xiàng)制鐵和韓國全北國立大學(xué)。此外,作者想感謝,浦項(xiàng)制鐵技術(shù)研發(fā)中心李先生的建設(shè)性評(píng)論和實(shí)物幫助。附錄C外文原文AbstractAmathematicalheattransfermodelforthepredictionofheatfluxontheslabsurfaceandtemperaturedistributionintheslabhasbeendevelcpedbvconsideringthethermalradiationinthefurnacechamberandtransientheatconductiongoverningequationsintheslab,respectively.Thefurnaceismodeledasradiatingmediumwithspatiallyvaryingtemperatureandconstantabsorptioncoefficient.Thesteelslabsaremovedonthenextfixedbeambythewalkingbeamafterbeingheatedupthroughthenon-firing,charging,preheating.heating,andsoakingzonesinthefurnace.RadiativeheatfluxcalculatedfromtheradiativeheatexchangewithinthefurnacemodeledusingtheFVMbyconsideringtheeffectoffurnacewall,slabandcombustiongasesisintroducedastheboundaryconditionofthetransientconductionequationoftheslab.Heattransfercharacteristicsandtemperaturebehavioroftheslabisinvestigatedbychangingsuchparametersasabsorptioncoefficientandemissivityoftheslab.Comparisonwiththeexperimentalworkshowthatthepresentheattransfermodelworkswellforthepredictionofthermalbehavioroftheslabinthereheatingfurnace.1IntroductionTheanalysisoftransientheatingcharacteristicsofthesteelslabsinareheatingfurnacehasattractedconsiderableattentionduringthepastfewdecadessincethefurnaceprocessshouldhaveJowerenergyconsumptionandpollutantemissions.Inaddition,requirementoftheuniformtemperaturedistributionsinsidethefurnaceexitgreatlyincreasestheimportanceofaccurateandfastpredictionoffurnaceprocessforthesubsequentrollingprocessbecausethisdeterminesthequalityofthesteelproduct.Intrinsically,thecombustionprocessandresultinghotgasflowwithinthefurnacechamberinfluencetheheattransferprocessthroughconduction,convection,andthermalradiationsimultaneously.However,complexthreedimensionalstructureofthefurnaceincludingstationaryandwalkingskidsmakestheproblemdifficulttoanalyzeaccuratelyandeconomically.Therefore,modelsandmethodsfirpredictingthefurnacecombustingbehaviorandheattransferprocessesareinhighdemand.Especially,accuratepredictionofthermalradiationbehaviorisquiteimportantbecausetheheattransferbythermalradiationisover90%ofthetotalheatfluximpingingontheslabsurface.Nowthatnosingleradiationmodelcansolveallsituationsencounteredinengineeringapplications,oneshouldselectanappropriateapproachforhisownspecificconcern.Inordertopredicttheradiativeheatfluxontheslabsurface,thereby,calculatethetemperaturedistributioninsideaslabaccurately,itssolutionmethodmustaccountforthesequentialslabmovement,nongraybehaviorofthefurnaceradiatinggases,andcomplexgeometryincludingcurvedfurnacewallandblockageeffectofslabofslabandskidpipes,aswellasmoderatecomputationalcost.Numerouspracticalengineeringmodelsandmethodsforthepredictionofthermalheatingcharacteristicsoftheslabinareheatingfurnacehavebeendevelopedandsuccessfullyappliedtovariousdifferentfurnacegeometries,andthesecanbeclassifiedasbelowseveralcategories.ThefirstoneistosolvethefullNavier-Stokesandenergyconservationequationsgoverningthehotgasflowandcombustionprocessinthefurnace,wherethermalradiationactsasanenergysourcetermviadivergenceofradiativeheatflux.Kimetal.PerformedthesethreedimensionalCFDanalysisbyconsideringtheturbulentreactiveflowandradiativeheattransferinthewalkingbeamtypeslabreheatingfurnacebyusingthecommercialFLUENTcode,andpredictedtemperaturedistributioninthefurnaceandheatfluxesthroughtheupperandHuhconductedsimilaranalysisandpredictedthethermalbehavioroftheslabbyconsideringthetransientconductionequationequationintheslab.AlthoughthesefullCFDanalysescanbeusedforaccuratepredictionofthethermalandcombustingfluidcharacteristicsinthefurnacewithslabheating,thereexistsuchdifficultiesastreatmentofsomanygoverningequationsandcomplexityofthefurnacestructureaswellasuncertainofthemodels,therefore,itnecessitateslongcomputationaltimeandresultingcosts.Thesecondmethodmodelsthefurnaceprocessasseveralwell-stirredgaszoneswithonedimensionalgasenergybalanceassuggestedbyChapmanetal.Theyperformedtheparametricinvestigationstofindtheeffectsofslabandrefractorywallemissivitiesandheightofthecombustionspaceonthethermalperformanceofthecontinuousreheatingfurnace.Theydidnot,however,predictthetemperaturedistributioninsidetheslab,andsomemodificationsareneededtodealwiththecomplexfurnacegeometryandwalkingbeamtypereheatingfurnacegeometryandwalkingbeamtypereheatingfurnaceconsideredinthiswork.Thefinalapproach,whichissimplebutcanreasonablysimulysisofradiativeheattransferoffurnacegasandtransienttransientheatconductionwithintheslab[5-7].Lietal.[5]developedthemathematicalmodelforpredictingsteadystateheattransferwithinthereheatingfurnace,wherethermalradiationinafurnacegasiscalculatedbyusingthezonemethod,whilethethermalresponseoftheslabisobtainedbysolvingthetransienttwodimensionalconductionequation.Totheauthor'sknowledge,however,thecomputingcostofthezonemethodisexpensiveandextensiontogeneralbody-fittedcoordinatestodealwiththecomplexfurnacestructureissomewhatdifficult.Yangetal.[6]alsodevelopedthesimilarheattransfermodelandpredictedthesimilarheattransfertransversetothemarchingdirectionoftheslabinthereheatingfurnace.AlthoughitismoresimpleandlesscomputationalwiththeapproachofLietal.[5],moregeneralandcomputationallyefficientmodelishighlydemandedforthefastandaccuratetemperaturepredictionoftheslab,ifconsideringtheusefulon-linemodelwhichmonitorsandcontrolsthefurnacesituationslikecontroloftheburnerandresidencetimeoftheslabwithinthefurnaceforrealtimeoperation.Recently,HarishandDutta[7]presentedacomputationalmodelfortheheattransferinadirect-firedpushertypereheatfurnacebyusingtheFYMforgasradiativeheattransferandWSGGMfornongraybehaviorofthecombustiongaseswithinthefurnace.Inthiswork,amathematicalheattransfermodeltopredicttheradiativeheatfluximpingingontheslabsurfaceandtemperaturedistributioninsidetheslabhasbeendevelopedbyconsideringthethermalradiationgoverningequationsinthefurnacechamberandtransientconductiongoverningequationsintheslabinthewalkingbeamtypereheatingfurnace,respectively.Thefurnaceismodeledasradiatingmediumwithspatiallyvaryingtemperatureandconstantabsorptioncoefficient.Theslabismovedonthenextfixedbeanbythewalkingbeamperiodicallypassingthroughthenon-firing,charging,preheating,heating,andsoakingzonesinthefurnace.Radiativeheatfluxcalculatedfromtheradiativeheatexchangewithinthefurnacechambermodeledusingthefinitevolumemethodforradiationbyconsideringtheeffectoffurnacewall,slab,andcombustiongasesisappliedastheboundaryconditionofthetransientheatconductionequationoftheslab.Inthefollowingsectionsafterdescribingthemethodologyadoptedhereforthepredictionoffurnaceprocesswithinthereheatingfurnace,heattransfercharacteristicsandthermalbehavioroftheslabareinvestigatedbychangingsuchparametersasabsorptioncoefficientandemissivityoftheslab,whilecomparisonwiththeexperimentaldataisalsopresented.Finally,someconcludingremarksaregiven.2Formulation2.1FurnacedescriptionTheroleofthereheatingfurnaceistoheatsteelslabsnearlyupto1200uniformlyforthesubsequentrollingprocess,andtheenergyforslabheatingissuppliedbyroofandbottomtangentialgas.burners.Usually,thisreheatingfurnaceiscomposedoffivezones,i.e,non-firing,charging,preheating,andsoakingzonesasshowninFig,1,whichisthesimplifiedfurnacemodelsimilartothePOSCOunit,Steelslabschargedintothenon-firingzonearemovedonthenextfixedbeambyawalkingbeamabouteverysomeminutesdependingontheresidencetimeoftheslabwithinthefurnace.Overalllongitudinalfurnacedimensioniseachzonewithinclinedconnectingroofandblockshapedbottomhill.EachSteelslabhas1.16minwidthand0.23minheightwith0.2mintervalbetweentheslabs,sothatslabsareassumedtobeisothermalof21.2whenchargingintothefurnacetoexitfromthefurnace,istyppically180mintoobtainthemeanslabtemperatureofabout1200atthefurnaceexit,therefore,slabsmovetothenextlocationevery4.6min.2.2GoeringequationsFig.2showstheheattransferpathoccurredwithinthefurnacechamber,inthisstudy,itisassumedthattheheattransfermodetotheslabsurfaceisonlythermalradiationwhileonlyconductionoccurswithintheslab.Heattransferwithinthesteelslabcanbecalculatedfromthetransienttwodimensionalheatconductionequationasfollowing;(1)Where,C,andlaredensity,specificheat,andconductivityofthesteelslab,respectively.Theradiativeheatfluxontheslabsurface,asshowninFig.3,isusedfortheboundaryconditionoftheaboveEq.(1),i.e,(2)Whereistheradiationintensityatslabsurfaceanddirectionistheunitnormalvectorattheslabsurface,andisthesolidangle.ForaradiativelyactivemediumtheradiationintensityatanypositionF,alongapaththroughanabsorbing,emittingandscatteringmediumcanbegivenbythefollowingRTE:(3)Whereistheextinctioncoefficient,isthescatteringalbedoandisthescatteringphasefunctionofradiativetransferfromtheincomingdirectiontothescatteringdirection.thisequation,ifthetemperatureofthemediumandboundaryconditionsforintensityaregiven,providesadistributionoftheradiationintensityinmedium.ForadiffuselyconditionofEq.(3)canbeexpressedasthesummationofemittedandreflectedoneslike:(4)Whereisthewallemissivity,andistheblackbodyofthewall.2.3FinitevolumesohationmethodsThetransientheatconductionequationisdiseretizedbyusingthefinitevolumemethodfollowingtheproceduresuggestedbyPatankar[8].Acentraldifferencingschemeisusedforthediffusiontermsistermsintheanddirections,whiletheunsteadytermistreatedimplicitlybyusingtheTDMAalgorithmuntilthetemperaturefieldintheslabsatisfiesthefollowingconvergencecriterion:(5)Whereisthepreviousiterationvalueofinthesametimelevel.InordertocomputetheradiativeheatfluxontheslabsurfaceexpressedinEq.(2),whichistheboundaryconditionofEq.(1),theRTE,Eq.(3)mustbeanalyzed.Inthiswork,thefinitevolumemethodforradiationsuggestedbyChuiandRaithby[9],anddevelopedbyChaietal.[10]andBaeketal.[11]isadoptedtodiscretizationequation,afterintegratingtheRTEoveracontrolvolumeandcontrolangleasshowninFig.4aandb,respectively,withtheassumptionthatthemagnitudeofintensityisconstantwithinacontrolvolumeandacontrolanglegiven,butallowingitsdirectiontovary,thefollowingequationcanbeobtained:(6)Where(7)(8)(9)(10)(11)Whereandarethesurfaceandoutwardunitnormalvectoratthesurfacei,respectively.Also,subscriptIrepresentsE,W,NandS,whileidoese,w,nands,respectively.Hereisadoptedastepschemeinwhichadownstreamfaceintensityissettoequaltotheupstreamnodalvalue,ThediscretizationprocedureandrelatedquantitiesareeasilyfoundinBaeketal.[11].Iftheradiativelyinactiveregionssuchasslabinthefurnaceandblockinthebottomfurnacewallexistwithinthesolutiondomain,likepointBinFig.4a,theblocked-offproceduresuggestedbyChaietal.[10]canbeadopted.Inthistreatment,althoughthecalculationisdoneoverthewholedomain,onlysolutionsintheactiveregionsaremeaningful.Inordertoexplaintheblocked-offtreatment,anadditionalsourcetermisintroducedintoEq.(6)asfollows[10,12]:(12)Foracellintheinactiveregionitbecomesand(whereLNisalargenumber;forexample,),whereasintheactiveregion,bothandaresetequaltozero.Foranactivecellindirectcontactwithaninactivecell,forexample,pointWinFig.4a,thefollowingconditionsareimposed:(13)(14)Finally,thecoefficientsofEqs.(8)and(9)arechangedsuchthat(15)(16)Theiterativesolutionprocedureisterminatedwhenthefollowingconvergenceisattained:(17)Whereisthepreviousiterationvalueof.Oncetheintensityfieldisobtained,theradiativeheatfluxontheslabsurfaceinEq.(2)canbeestimatedbyusingthedirectionalweightsasfollows:(18)Toobtaintheindividualslabtemperatureineachtime,thecalculationstartsfromthermalradiationinthefurnacechambertigiveradiativeheatfluxoneachslabsurface.Then,heatconductioninsidetheslabissequentiallysimulatedfromfisttothefinal28thslab.Thiscalculationloopisrepeateduntiltheslabmovestothenextfixedbeambyawalkingbeam,andabovementionedcalculationprocedureisperformedwiththeinitialslabtemperatureofpreviouslycalculatedoneatthatlocation.Thesecalculationproceduresareterminatedwhenitbecomestheresidencetimeoftheslabinthefurnace.3Resultsanddiscussion3.1ResultsanddiscussionThereheatingfurnaceheattransfermodelwiththermalradiationinthefurnacechamberandtransientheatconductioninsidetheslabpresentedaboveisappliedtoinvestigateseveralaspectsoffurnacebehavior,especially,focusingontheslabtemperatureateachslabandradiativeheatfluxontheslabsurfaceinthemodelfivezonereheatingfurnacesimilartithePOSCOunit.ThetemperatureofthefurnacewallandgaseswithinthechamberusesforthesimulationarelistedinTable1,andthethermophysicalpropertiesoftheradiatinggasesis0.15,andemissivitiesofthefurnacewallaresetti0.75and0.5,respectively,whileitisassumedthatthereisnoscattering,i.e,,therefore,.Thespatialmeshsystemsusedinthisstudyisandangularsystemsofforsr.Allcalculationswereconductedona1.7MHzpersonalcomputer,andrequiredcomputationaltimeisabout1260s.Fig.5aillustratesthetemperaturedistributionofthetotal28slabswiththefivezonefurnacetemperaturelistedinTable1.Thefirstslabchargedintothenon-firingzonewith21.2receivesstrongthermalradiationfromneigh-boringhotfurnacegasesandwallbecauseofrelativelyhightemperaturedifferencebetweentheslabandothers,andthenheatedupaspassingthroughthesubsequentcharging,preheating,andheatingzonesnearlyto1150.Temperaturewithintheslab,however,isslightlyloweredandsomewhatequilibratedinthefinalsoakingzone.Fig.5bshowstheradiationbehaviorinthefurnacechamber,i,e,radiativeheatflux(vectors)andincidentradiation(contours).Notethatinthefirsttwozonesradiativeheatfluxvectorsareconcentratedontheslablocatedatthenearcenterofthefurnaceheight,whichmeansthatalotofheatingismadeintheseearlyzonesofthefurnace.steelslabsaremoreheatedbypassingthroughthetemperatureappearsintheheatingzones,thereby,peaktemperatureappearsintheheatingzone.Ontheotherhand,inthefinalsoakingzone,becausethefurnacetemperatureisslightlydownabout90thanthepreviousheatingzoneandtheslabisinhightemperature,someradiativeheatfluxisemittedfromthehotslab,whichisthereversephenomenoncomparedwiththesituationinthepreviouszones.Therefore,temperatureoftheslabisslightlyloweredandthetemperaturegradientwithintheslabbecomessmaller.AbovementionedthermalbehaviorinthereheatingfurnacecanbeseenindetailinFig.6,wheredistributionoftheradiativeheatfluxvectorsontheslabsurfaceandtemperaturecontoursinsidetheparticularslabineachzoneareillustrated.Here,directionofradiativeheat'fluxvectorisrearrangedtoshowwhetherthenetheatfluxentersorleavesthesurfaceoftheslab.ThefirstslabinFig.6aisintheentranceofthefurnace,therefore,heatfluxvectorontheleftsidedisappears.Asgoingrightendoftheslab,however,moreheatreachestheupperandlowersurfaceoftheslabbecauseofhotneighboringgasesinthefurnace.Alsoitisnotedthatatbothrightcornersheatfluxescomefrombothhorizontalandverticaldirections,thereby,asisexpected,maximumtemperatureof346.1isformedinthiscornerregionwhileminimumtemperatureisfoundintheleftcenterregionoftheslab.Ontheotherhand,althoughthethirdslabinFig.6bisinthesamenon-firingzone,moreheatfluxesimpingeontheslabsurfacefromfurnacechamberandwallbecausewhichislocatedintheinnerpartofthefurnacethanfirstslab.Therefore,theslabismoreheateduptomaximum547.1,andminimumtemperatureosalsoincreasesto245.8.Asyet,however,temperaturedistributionshowsthesharpgradientinsidetheslab.The7thslabinFig.6cisinthechargingzone,wheretheslabhastemperaturerangebetween583.9and925.5.Astheslabmovestothepreheatingzone,however,sincetheslabsaresufficientlyheatedupandtherebytemperaturedifferencebetweentheslabandneighboringmediumandfurnacewallbecomessmall,magnitudeofheatfluxdecreasesasshowninFig.6d.Atthesamereason,theincomingheatfluxmoredecreasesinthe17thslabinheatingzoneasshowninFig.6e,therefore,temperatureriseoftheslabisweakenedandtemperatureismoreevenlydistributed.Fig.6fshowsthe26thslabinthefinalsoakingzone,wheretemperatureofthemediumandfurnacewalldecreasesthanthepreviousheatingzone.Consequently,onecannoticetheoccurrenceofthebackheatflowfromtheslabsurfaceintoitssurroundingsandtemperatureoftheslabdecreasesmoreorlesscomparedwiththeslabinthepreviousheatingzone.Further,displayedinFig.7arethepredictedtemperatureprofilesoftheslanalongthelongitudinaldirectionofthefurnace,whereTs_u,Ts_c,andTs_ddenotetheaveragetemperatureoftheuppersurface,centerlineoftheslabM.Y.Kim/InternationalJournalofHeatandMassTransfer50(2007)3740-3748Fig.6.Distributionoftheradiativeheatfluxvectorontheslabsurfaceandtemperaturecontoursintheslab:(a)1stslab,,,(b)3rdslab,,,(c)7thslab,,,(d)12thslab,,,(e)17thslab,,,(f)26thslab,,.Fig.7.Predictedtemperatureprofilesoftheslabalongtheaxialdirectionofthefurnaceheight,andlowersurfaceoftheslab,respectively.Wecanseethatthecenterlinetemperatureoftheslabchargedintothefurnacewith21.2linearlyincreasesthroughthefirstfourzonesfrom60.4to1040.0.Inthefinalsoakingzone,however,temperatureslightlydecreasesandremainsalmostconstantabout1010.0.Asfortheupperandlowersurfaceitisfoundthatalthoughtheuppertemperatureisslightlylowerthantheloweroneinthefirstnon-firingzonebecauseofthelowercoldfurnacewallismorefarfromtheslab,afterchargingzonethetemperaturereversaloccursanduppertemperatureishigherthanloweroneduetothefurnacebottomwall.Onthecontrary,inthefinalsoakingzone,lowersurfaceismuchlowerthantheM.Y.Kim/InternationalJournalofHeatandMassTransfer50(2007)3740-3748centerlinetemperatureduetotheabovementionedback

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論