版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河南省鄭州一〇六中學(xué)2024年高二上數(shù)學(xué)期末統(tǒng)考模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.我國新冠肺炎疫情防控進(jìn)入常態(tài)化,各地有序進(jìn)行疫苗接種工作,下面是我國甲、乙兩地連續(xù)11天的疫苗接種指數(shù)折線圖,根據(jù)該折線圖,下列說法不正確的是()A.這11天甲地指數(shù)和乙地指數(shù)均有增有減B.第3天至第11天,甲地指數(shù)和乙地指數(shù)都超過80%C.在這11天期間,乙地指數(shù)的增量大于甲地指數(shù)的增量D.第9天至第11天,乙地指數(shù)的增量大于甲地指數(shù)的增量2.已知拋物線上一點M與焦點間的距離是3,則點M的縱坐標(biāo)為()A.1 B.2C.3 D.43.設(shè)拋物線上一點到軸的距離是4,則點到該拋物線焦點的距離是()A.6 B.8C.9 D.104.已知雙曲線,則“”是“雙曲線的焦距大于4”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.已知橢圓的離心率為,直線與橢圓交于兩點,為坐標(biāo)原點,且,則橢圓的方程為A B.C. D.6.橢圓的一個焦點坐標(biāo)為,則()A.2 B.3C.4 D.87.若函數(shù)在區(qū)間單調(diào)遞增,則的取值范圍是()A. B.C. D.8.下列說法中正確的是()A.棱柱的側(cè)面可以是三角形B.棱臺的所有側(cè)棱延長后交于一點C.所有幾何體的表面都能展開成平面圖形D.正棱錐的各條棱長都相等9.已知是橢圓右焦點,點在橢圓上,線段與圓相切于點,且,則橢圓的離心率等于()A. B.C. D.10.連擲一枚均勻的骰子兩次,所得向上的點數(shù)分別為m,n,記,則下列說法正確的是()A.事件“”的概率為 B.事件“t是奇數(shù)”與“”互為對立事件C.事件“”與“”互為互斥事件 D.事件“且”的概率為11.拋物線的焦點到準(zhǔn)線的距離為()A. B.C. D.12.和的等差中項與等比中項分別為()A., B.2,C., D.1,二、填空題:本題共4小題,每小題5分,共20分。13.關(guān)于曲線,則以下結(jié)論正確的個數(shù)有______個①曲線C關(guān)于原點對稱;②曲線C中,;③曲線C是不封閉圖形,且它與圓無公共點;④曲線C與曲線有4個交點,這4點構(gòu)成正方形14.若恒成立,則______.15.已知,空間直角坐標(biāo)系中,過點且一個法向量為的平面的方程為.用以上知識解決下面問題:已知平面的方程為,直線是兩個平面與的交線,則直線與平面所成角的正弦值為___________.16.已知橢圓方程為,左、右焦點分別為、,P為橢圓上的動點,若的最大值為,則橢圓的離心率為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,,函數(shù),直線是函數(shù)圖象的一條對稱軸(1)求函數(shù)的解析式及單調(diào)遞增區(qū)間;(2)若,,的面積為,求的周長18.(12分)已知橢圓的離心率為,點在橢圓上.(1)求橢圓的方程;(2)過點作軸的平行線交軸于點,過點的直線與橢圓交于兩個不同的點、,直線、與軸分別交于、兩點,若,求直線的方程;(3)在第(2)問條件下,點是橢圓上的一個動點,請問:當(dāng)點與點關(guān)于軸對稱時的面積是否達(dá)到最大?并說明理由.19.(12分)直線經(jīng)過兩直線和的交點(1)若直線與直線平行,求直線的方程;(2)若點到直線的距離為,求直線的方程20.(12分)已知的三個內(nèi)角,,的對邊分別為,,,且滿足.(1)求角的大??;(2)若,,,求的長.21.(12分)已知橢圓C:的長軸長為4,離心率e是方程的一根(1)求橢圓C的方程;(2)已知O是坐標(biāo)原點,斜率為k的直線l經(jīng)過點,已知直線l與橢圓C相交于點A,B,求面積的最大值22.(10分)如圖,在直三棱柱中,,,,分別為,,的中點,點在棱上,且,,.(1)求證:平面;(2)求證:平面平面;(3)求平面與平面的距離.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】由折線圖逐項分析得到答案.【題目詳解】對于選項A,從折線圖中可以直接觀察出甲地和乙地的指數(shù)有增有減,故選項A正確;對于選項B,從第3天至第11天,甲地指數(shù)和乙地指數(shù)都超過80%,故選項B正確;對于選項C,從折線圖上可以看出這11天甲的增量大于乙的增量,故選項C錯誤;對于選項D,從折線圖上可以看出第9天至第11天,乙地指數(shù)的增量大于甲地指數(shù)的增量,故D正確;故選:C.2、B【解題分析】利用拋物線的定義求解即可【題目詳解】拋物線的焦點為,準(zhǔn)線方程為,因為拋物線上一點M與焦點間的距離是3,所以,得,即點M的縱坐標(biāo)為2,故選:B3、A【解題分析】計算拋物線的準(zhǔn)線,根據(jù)距離結(jié)合拋物線的定義得到答案.【題目詳解】拋物線的焦點為,準(zhǔn)線方程為,到軸的距離是4,故到準(zhǔn)線的距離是,故點到該拋物線焦點的距離是.故選:A.4、A【解題分析】先找出“雙曲線的焦距大于4”的充要條件,再進(jìn)行判斷即可【題目詳解】若的焦距,則;若,則故選:A5、D【解題分析】根據(jù)等腰直角三角形的性質(zhì)可得,將代入橢圓方程,結(jié)合離心率為以及性質(zhì)列方程組求得與的值,從而可得結(jié)果.【題目詳解】設(shè)直線與橢圓在第一象限的交點為,因為,所以,即,由可得,,故所求橢圓的方程為.故選D.【題目點撥】本題主要考查橢圓的標(biāo)準(zhǔn)方程與性質(zhì),以及橢圓離心率的應(yīng)用,意在考查對基礎(chǔ)知識掌握的熟練程度,屬于中檔題.6、D【解題分析】由條件可得,,,,由關(guān)系可求值.【題目詳解】∵橢圓方程為:,∴,∴,,∵橢圓的一個焦點坐標(biāo)為,∴,又,∴,∴,故選:D.7、A【解題分析】函數(shù)在區(qū)間上單調(diào)遞增,轉(zhuǎn)化為導(dǎo)函數(shù)在該區(qū)間上大于等于0恒成立,進(jìn)而求出結(jié)果.【題目詳解】由題意得:在區(qū)間上恒成立,而,所以.故選:A8、B【解題分析】根據(jù)棱柱、棱臺、球、正棱錐結(jié)構(gòu)特征依次判斷選項即可.【題目詳解】棱柱的側(cè)面都是平行四邊形,A不正確;棱臺是由對應(yīng)的棱錐截得的,B正確;不是所有幾何體的表面都能展開成平面圖形,例如球不能展開成平面圖形,C不正確;正棱錐的各條棱長并不是都相等,應(yīng)該為正棱錐的側(cè)棱長都相等,所以D不正確.故選:B.9、A【解題分析】結(jié)合橢圓的定義、勾股定理列方程,化簡求得,由此求得離心率.【題目詳解】圓的圓心為,半徑為.設(shè)左焦點為,連接,由于,所以,所以,所以,由于,所以,所以,,.故選:A10、D【解題分析】計算出事件“t=12”的概率可判斷A;根據(jù)對立事件的概念,可判斷B;根據(jù)互斥事件的概念,可判斷C;計算出事件“t>8且mn<32”的概率可判斷D;【題目詳解】連擲一枚均勻的骰子兩次,所得向上的點數(shù)分別為m,n,則共有個基本事件,記t=m+n,則事件“t=12”必須兩次都擲出6點,則事件“t=12”的概率為,故A錯誤;事件“t是奇數(shù)”與“m=n”為互斥不對立事件,如事件m=3,n=5,故B錯誤;事件“t=2”與“t≠3”不是互斥事件,故C錯誤;事件“t>8且mn<32”有共9個基本事件,故事件“t>8且mn<32”的概率為,故D正確;故選:D11、C【解題分析】根據(jù)拋物線方程求出焦點坐標(biāo)與準(zhǔn)線方程,即可得解;【題目詳解】解:因為拋物線方程為,所以焦點坐標(biāo)為,準(zhǔn)線的方程為,所以焦點到準(zhǔn)線的距離為;故選:C12、C【解題分析】根據(jù)等差中項和等比中項的概念分別求值即可.【題目詳解】和的等差中項為,和的等比中項為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、2【解題分析】根據(jù)曲線的方程,以及曲線的對稱性、范圍,結(jié)合每個選項進(jìn)行逐一分析,即可判斷.【題目詳解】①將方程中的分別換為,方程不變,故該曲線關(guān)于原點對稱,故正確;②因為,解得或,故,同理可得:,故錯誤;③根據(jù)②可知,該曲線不是封閉圖形;聯(lián)立與,可得:,將其視作關(guān)于的一元二次方程,故,所以方程無根,故曲線與沒有交點;綜上所述,③正確;④假設(shè)曲線C與曲線有4個交點且交點構(gòu)成正方形,根據(jù)對稱性,第一象限的交點必在上,聯(lián)立與可得:,故交點為,而此點坐標(biāo)不滿足,所以這樣的正方形不存在,故錯誤;綜上所述,正確的是①③.故答案為:.【題目點撥】本題考察曲線與方程中利用曲線方程研究曲線性質(zhì),處理問題的關(guān)鍵是把握由曲線方程如何研究對稱性以及范圍問題,屬困難題.14、1【解題分析】利用導(dǎo)數(shù)研究的最小值為,再構(gòu)造研究其最值,即可確定參數(shù)a的值.【題目詳解】令,則且,當(dāng)時,遞減;當(dāng)時,遞增;所以,即在上恒成立,令,則,當(dāng)時,遞增;當(dāng)時,遞減;所以,綜上,.故答案為:115、【解題分析】由題意分別求出這三個平面的法向量,設(shè)直線的方向向量為,由直線與平面與的法向量垂直,得出,由向量的夾角公式可得答案.【題目詳解】由,解得,即直線與平面的交點坐標(biāo)為平面的方程為,可得所以平面的法向量為平面的法向量為,的法向量為設(shè)直線的方向向量為,則,即取,設(shè)直線與平面所成角則故答案為:16、【解題分析】利用橢圓的定義結(jié)合余弦定理可求得,再利用公式可求得該橢圓的離心率的值.【題目詳解】由橢圓的定義可得,由余弦定理可得,因為的最大值為,則,可得,因此,該橢圓的離心率為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),單調(diào)遞增區(qū)間為.(2)【解題分析】(1)先利用向量數(shù)量積運算、二倍角公式、輔助角公式求出,再求單增區(qū)間;(2)利用面積公式求出,再利用余弦定理求出,即可求出周長.小問1詳解】已知,,函數(shù),所以.因為直線是函數(shù)圖象的一條對稱軸,所以,所以,又,所以當(dāng)k=0時,符合題意,此時要求的單調(diào)遞增區(qū)間,只需,解得:,所以的單調(diào)遞增區(qū)間為.【小問2詳解】由于,所以,所以.因為,所以.因為的面積為,所以,即,解得:.又,由余弦定理可得:,即,所以,所以,所以的周長.18、(1);(2);(3)當(dāng)點與點關(guān)于軸對稱時,的面積達(dá)到最大,理由見解析.【解題分析】(1)設(shè),可得出,,將點的坐標(biāo)代入橢圓的方程,求出的值,即可得出橢圓的方程;(2)分析可知直線的斜率存在,設(shè)直線的方程為,設(shè)點、,將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,由已知可得,結(jié)合韋達(dá)定理可求得的值,即可得出直線的方程;(3)設(shè)與直線平行且與橢圓相切的直線的方程為,將該直線方程與橢圓的方程聯(lián)立,由判別式為零可求得,分析可知當(dāng)點為直線與橢圓的切點時,的面積達(dá)到最大,求出直線與橢圓的切點坐標(biāo),可得出結(jié)論.【小問1詳解】解:因為,設(shè),則,,所以,橢圓的方程可表示為,將點的坐標(biāo)代入橢圓的方程可得,解得,因此,橢圓的方程為.【小問2詳解】解:設(shè)線段的中點為,因為,則軸,故直線、的傾斜角互補(bǔ),易知點,若直線軸,則、為橢圓短軸的兩個頂點,不妨設(shè)點、,則,,,不合乎題意.所以,直線的斜率存在,設(shè)直線的方程為,設(shè)點、,聯(lián)立,可得,,由韋達(dá)定理可得,,,,則,所以,解得,因此,直線的方程為.【小問3詳解】解:設(shè)與直線平行且與橢圓相切的直線的方程為,聯(lián)立,可得(*),,解得,由題意可知,當(dāng)點為直線與橢圓的切點時,此時的面積取最大值,當(dāng)時,方程(*)為,解得,此時,即點.此時,點與點關(guān)于軸對稱,因此,當(dāng)點與點關(guān)于軸對稱時,的面積達(dá)到最大.【題目點撥】方法點睛:圓錐曲線中的最值問題解決方法一般分兩種:一是幾何法,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來求最值;二是代數(shù)法,常將圓錐曲線的最值問題轉(zhuǎn)化為二次函數(shù)或三角函數(shù)的最值問題,然后利用基本不等式、函數(shù)的單調(diào)性或三角函數(shù)的有界性等求最值19、(1)(2)或【解題分析】(1)由題意兩立方程組,求兩直線的交點的坐標(biāo),利用兩直線平行的性質(zhì),用待定系數(shù)法求出的方程(2)分類討論直線的斜率,利用點到直線的距離公式,用點斜式求直線的方程【小問1詳解】解:由,解得,所以兩直線和的交點為當(dāng)直線與直線平行,設(shè)的方程為,把點代入求得,可得的方程為【小問2詳解】解:斜率不存在時,直線方程為,滿足點到直線的距離為5當(dāng)?shù)男甭蚀嬖跁r,設(shè)直限的方程為,即,則點到直線的距離為,求得,故的方程為,即綜上,直線的方程為或20、(1);(2).【解題分析】(1)由正弦定理化邊為角后,結(jié)合兩角和的正弦公式、誘導(dǎo)公式可求得;(2)用表示出,然后平方由數(shù)量積的運算求得向量的模(線段長度)【題目詳解】(1)因為,所以由正弦定理可得,即,因為,所以,,∵,故;(2)由,得,所以,所以.21、(1);(2).【解題分析】(1)待定系數(shù)法求橢圓的方程;(2)設(shè)直線的方程為,,,用“設(shè)而不求法”表示出三角形OAB的面積.令轉(zhuǎn)化為關(guān)于t的函數(shù),利用函數(shù)求最值.【題目詳解】(1)依題意得:,∴.方程的根為或.∵橢圓的離心率,∴,∴∴∴橢圓方程為.(2)設(shè)直線的方程為,,由,得,則,點到直線的距離為,.令,則..∵在單調(diào)遞增,∴時.有最小值3.此時有最大值.∴面積的最大值為.22、(1)見解析(2)見解析(3)【解題分析】(1)利用勾股定理證得,證明平面,根據(jù)線面垂直的性質(zhì)證得,再根據(jù)線面垂直的判定定理即可得證;(2)取的中點,連接,可得為的中點,證明,四邊形是平行四
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度農(nóng)業(yè)生態(tài)保護(hù)承包協(xié)議3篇
- 專項2024進(jìn)出口貿(mào)易合作勞動協(xié)議版A版
- 專業(yè)防水服務(wù)協(xié)議規(guī)范版B版
- 專業(yè)土方買賣協(xié)議指導(dǎo)文本(2024版)版B版
- 專業(yè)方木買賣:2024年協(xié)議范本一
- 2025年度歷史文化街區(qū)拆遷承包合同4篇
- 2025年度展覽館場地借用及展覽策劃服務(wù)合同4篇
- 二零二四商標(biāo)權(quán)轉(zhuǎn)讓與市場推廣服務(wù)合同范本3篇
- 二零二五年度文化產(chǎn)業(yè)園項目合作協(xié)議3篇
- 不動產(chǎn)居間服務(wù)協(xié)議模板2024版B版
- 建筑保溫隔熱構(gòu)造
- 智慧財務(wù)綜合實訓(xùn)
- 安徽省合肥市2021-2022學(xué)年七年級上學(xué)期期末數(shù)學(xué)試題(含答案)3
- 教育專家報告合集:年度得到:沈祖蕓全球教育報告(2023-2024)
- 肝臟腫瘤護(hù)理查房
- 護(hù)士工作壓力管理護(hù)理工作中的壓力應(yīng)對策略
- 2023年日語考試:大學(xué)日語六級真題模擬匯編(共479題)
- 皮帶拆除安全技術(shù)措施
- ISO9001(2015版)質(zhì)量體系標(biāo)準(zhǔn)講解
- 《培訓(xùn)資料緊固》課件
- 黑龍江省政府采購評標(biāo)專家考試題
評論
0/150
提交評論