版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆黑龍江省哈爾濱市第三中學(xué)數(shù)學(xué)高二上期末監(jiān)測(cè)模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列關(guān)于函數(shù)及其圖象的說(shuō)法正確的是()A.B.最小正周期為C.函數(shù)圖象的對(duì)稱中心為點(diǎn)D.函數(shù)圖象的對(duì)稱軸方程為2.在等差數(shù)列中,為其前n項(xiàng)和,,則()A.55 B.65C.15 D.603.4位同學(xué)報(bào)名參加四個(gè)課外活動(dòng)小組,每位同學(xué)限報(bào)其中的一個(gè)小組,則不同的報(bào)名方法共有()A.24種 B.81種C.64種 D.256種4.已知等差數(shù)列的公差為,前項(xiàng)和為,等比數(shù)列的公比為,前項(xiàng)和為.若,則()A. B.C. D.5.在平面直角坐標(biāo)系xOy中,雙曲線(,)的左、右焦點(diǎn)分別為,,點(diǎn)M是雙曲線右支上一點(diǎn),,且,則雙曲線的離心率為()A. B.C. D.6.已知集合,,則()A. B.C. D.7.已知,條件,條件,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.在棱長(zhǎng)為1的正四面體中,點(diǎn)滿足,點(diǎn)滿足,當(dāng)和的長(zhǎng)度都為最短時(shí),的值是()A. B.C. D.9.記為等差數(shù)列的前n項(xiàng)和,有下列四個(gè)等式,甲:;乙:;丙:;?。海绻挥幸粋€(gè)等式不成立,則該等式為()A.甲 B.乙C.丙 D.丁10.已知正方形的四個(gè)頂點(diǎn)都在橢圓上,若的焦點(diǎn)F在正方形的外面,則的離心率的取值范圍是()A. B.C. D.11.對(duì)于兩個(gè)平面、,“內(nèi)有三個(gè)點(diǎn)到的距離相等”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.某制藥廠為了檢驗(yàn)?zāi)撤N疫苗預(yù)防的作用,把名使用疫苗的人與另外名未使用疫苗的人一年中的記錄作比較,提出假設(shè):“這種疫苗不能起到預(yù)防的作用”,利用列聯(lián)表計(jì)算得,經(jīng)查對(duì)臨界值表知.則下列結(jié)論中,正確的結(jié)論是()A.若某人未使用該疫苗,則他在一年中有的可能性生病B.這種疫苗預(yù)防的有效率為C.在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為“這種疫苗能起到預(yù)防的作用”D.有的把握認(rèn)為這種疫苗不能起到預(yù)防生病的作用二、填空題:本題共4小題,每小題5分,共20分。13.已知曲線,①若,則是橢圓,其焦點(diǎn)在軸上;②若,則是圓,其半徑為;③若,則是雙曲線,其漸近線方程為;④若,,則是兩條直線.以上四個(gè)命題,其中正確的序號(hào)為_________.14.設(shè)函數(shù)f(x)在R上滿足f(x)+xf′(x)>0,若a=(30.3)f(30.3),b=(logπ3)·f(logπ3),則a與b的大小關(guān)系為________15.=______.16.不大于100的正整數(shù)中,被3除余1的所有數(shù)的和是___________三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知兩個(gè)定點(diǎn),,動(dòng)點(diǎn)滿足,設(shè)動(dòng)點(diǎn)的軌跡為曲線,直線:(1)求曲線的軌跡方程;(2)若與曲線交于不同的、兩點(diǎn),且(為坐標(biāo)原點(diǎn)),求直線的斜率;18.(12分)有1000人參加了某次垃圾分類知識(shí)競(jìng)賽,從中隨機(jī)抽取100人,將這100人的此次競(jìng)賽的分?jǐn)?shù)分成5組:[50,60),[60,70),[70,80),[80,90),[90,100],并整理得到如下頻率分布直方圖.(1)求圖中a的值;(2)估計(jì)總體1000人中競(jìng)賽分?jǐn)?shù)不少于70分的人數(shù);(3)假設(shè)同組中的每個(gè)數(shù)據(jù)都用該組區(qū)間的中點(diǎn)值代替,估計(jì)總體1000人的競(jìng)賽分?jǐn)?shù)的平均數(shù).19.(12分)某工廠為了解甲、乙兩條生產(chǎn)線所生產(chǎn)產(chǎn)品的質(zhì)量,分別從甲、乙兩條生產(chǎn)線生產(chǎn)的產(chǎn)品中各隨機(jī)抽取了1000件產(chǎn)品,并對(duì)所抽取產(chǎn)品的某一質(zhì)量指數(shù)進(jìn)行檢測(cè),根據(jù)檢測(cè)結(jié)果按分組,得到如圖所示的頻率分布直方圖,若該工廠認(rèn)定產(chǎn)品的質(zhì)量指數(shù)不低于6為優(yōu)良級(jí)產(chǎn)品,產(chǎn)品的質(zhì)量指數(shù)在內(nèi)時(shí)為優(yōu)等品.(1)用統(tǒng)計(jì)有關(guān)知識(shí)判斷甲、乙兩條生產(chǎn)線所生產(chǎn)產(chǎn)品的質(zhì)量哪一條更好,并說(shuō)明理由(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);(2)用分層抽樣的方法從該工廠樣品的優(yōu)等品中抽取6件產(chǎn)品,在這6件產(chǎn)品中隨機(jī)抽取2件,求抽取到的2件產(chǎn)品都是甲生產(chǎn)線生產(chǎn)的概率.20.(12分)已知雙曲線C:(,)的一條漸近線的方程為,雙曲線C的右焦點(diǎn)為,雙曲線C的左、右頂點(diǎn)分別為A,B(1)求雙曲線C的方程;(2)過(guò)右焦點(diǎn)F的直線l與雙曲線C的右支交于P,Q兩點(diǎn)(點(diǎn)P在x軸的上方),直線AP的斜率為,直線BQ的斜率為,證明:為定值21.(12分)新冠肺炎疫情發(fā)生以來(lái),我國(guó)某科研機(jī)構(gòu)開展應(yīng)急科研攻關(guān),研制了一種新型冠狀病毒疫苗,并已進(jìn)入二期臨床試驗(yàn).根據(jù)普遍規(guī)律,志愿者接種疫苗后體內(nèi)會(huì)產(chǎn)生抗體,人體中檢測(cè)到抗體,說(shuō)明有抵御病毒的能力.通過(guò)檢測(cè),用表示注射疫苗后的天數(shù),表示人體中抗體含量水平(單位:,即:百萬(wàn)國(guó)際單位/毫升),現(xiàn)測(cè)得某志愿者的相關(guān)數(shù)據(jù)如下表所示:天數(shù)123456抗體含量水平510265096195根據(jù)以上數(shù)據(jù),繪制了散點(diǎn)圖.(1)根據(jù)散點(diǎn)圖判斷,與(a,b,c,d均為大于0的實(shí)數(shù))哪一個(gè)更適宜作為描述y與x關(guān)系的回歸方程類型?(給出判斷即可,不必說(shuō)明理由)(2)根據(jù)(1)的判斷結(jié)果求出y關(guān)于x的回歸方程,并預(yù)測(cè)該志愿者在注射疫苗后的第10天的抗體含量水平值;(3)從這位志愿者前6天的檢測(cè)數(shù)據(jù)中隨機(jī)抽取4天的數(shù)據(jù)作進(jìn)一步的分析,記其中的y值大于50的天數(shù)為X,求X的分布列與數(shù)學(xué)期望.參考數(shù)據(jù):3.5063.673.4917.509.4912.95519.014023.87其中.參考公式:用最小二乘法求經(jīng)過(guò)點(diǎn),,,,的線性回歸方程的系數(shù)公式,;.22.(10分)已知拋物線的準(zhǔn)線方程是.(Ⅰ)求拋物線方程;(Ⅱ)設(shè)直線與拋物線相交于,兩點(diǎn),為坐標(biāo)原點(diǎn),證明:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】化簡(jiǎn),利用正弦型函數(shù)的性質(zhì),依次判斷,即可【題目詳解】∵∴,A選項(xiàng)錯(cuò)誤;的最小正周期為,B選項(xiàng)錯(cuò)誤;令,則,故函數(shù)圖象的對(duì)稱中心為點(diǎn),C選項(xiàng)錯(cuò)誤;令,則,所以函數(shù)圖象的對(duì)稱軸方程為,D選項(xiàng)正確故選:D2、B【解題分析】根據(jù)等差數(shù)列求和公式結(jié)合等差數(shù)列的性質(zhì)即可求得.【題目詳解】解析:因?yàn)闉榈炔顢?shù)列,所以,即,.故選:B3、D【解題分析】利用分步乘法計(jì)數(shù)原理進(jìn)行計(jì)算.【題目詳解】每位同學(xué)均有四種選擇,故不同的報(bào)名方法有種.故選:D4、D【解題分析】用基本量表示可得基本量的關(guān)系式,從而可得,故可得正確的選項(xiàng).【題目詳解】若,則,而,此時(shí),這與題設(shè)不合,故,故,故,而,故,此時(shí)不確定,故選:D.5、A【解題分析】本題考查雙曲線的定義、幾何性質(zhì)及直角三角形的判定即可解決.【題目詳解】因?yàn)?,,所以在中,邊上的中線等于的一半,所以.因?yàn)椋钥稍O(shè),,則,解得,所以,由雙曲線的定義得,所以雙曲線的離心率故選:A6、A【解題分析】由已知得,因?yàn)?,所以,故選A7、A【解題分析】利用“1”的妙用探討命題“若p則q”的真假,取特殊值計(jì)算說(shuō)明“若q則p”的真假即可判斷作答.【題目詳解】因?yàn)椋傻茫?,則,當(dāng)且僅當(dāng),即時(shí)取等號(hào),因此,,因,,由,取,則,,即,,所以是的充分不必要條件.故選:A8、A【解題分析】根據(jù)給定條件確定點(diǎn)M,N的位置,再借助空間向量數(shù)量積計(jì)算作答.【題目詳解】因,則,即,而,則共面,點(diǎn)M在平面內(nèi),又,即,于是得點(diǎn)N在直線上,棱長(zhǎng)為1的正四面體中,當(dāng)長(zhǎng)最短時(shí),點(diǎn)M是點(diǎn)A在平面上的射影,即正的中心,因此,,當(dāng)長(zhǎng)最短時(shí),點(diǎn)N是點(diǎn)D在直線AC上的射影,即正邊AC的中點(diǎn),,而,,所以.故選:A9、D【解題分析】分別假設(shè)甲、乙、丙、丁不成立,驗(yàn)證得到答案【題目詳解】設(shè)數(shù)列的公差為,若甲不成立,則,由①,③可得,此時(shí)與②矛盾;A錯(cuò),若乙不成立,則,由①,③可得,此時(shí);與②矛盾;B錯(cuò),若丙不成立,則,由①,③可得,此時(shí);與②矛盾;C錯(cuò),若丁不成立,則,由①,③可得,此時(shí);,D對(duì),故選:D.10、C【解題分析】如圖由題可得,進(jìn)而可得,即求.【題目詳解】如圖根據(jù)對(duì)稱性,點(diǎn)D在直線y=x上,可設(shè),則,∴,可得,,即,又解得.故選:C.11、B【解題分析】根據(jù)平面的性質(zhì)分別判斷充分性和必要性.【題目詳解】充分性:若內(nèi)有三個(gè)點(diǎn)到的距離相等,當(dāng)這三個(gè)點(diǎn)不在一條直線上時(shí),可得;當(dāng)這三個(gè)點(diǎn)在一條直線上時(shí),則、平行或相交,故充分性不成立;必要性:若,則內(nèi)每個(gè)點(diǎn)到的距離相等,故必要性成立,所以“內(nèi)有三個(gè)點(diǎn)到的距離相等”是“”的必要不充分條件.故選:B.12、C【解題分析】根據(jù)的值與臨界值的大小關(guān)系進(jìn)行判斷.【題目詳解】∵,,∴在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為“這種疫苗能起到預(yù)防的作用”,C對(duì),由已知數(shù)據(jù)不能確定若某人未使用該疫苗,則他在一年中有的可能性生病,A錯(cuò),由已知數(shù)據(jù)不能判斷這種疫苗預(yù)防的有效率為,B錯(cuò),由已知數(shù)據(jù)沒有的把握認(rèn)為這種疫苗不能起到預(yù)防生病的作用,D錯(cuò),故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、①③④【解題分析】通過(guò)m,n的取值判斷焦點(diǎn)坐標(biāo)所在軸,判斷①,求出圓的半徑判斷②;通過(guò)求解雙曲線的漸近線方程,判斷③;利用,,判斷曲線是否是兩條直線判斷④【題目詳解】解:①若,則,因?yàn)榉匠袒癁椋?,焦點(diǎn)坐標(biāo)在y軸,所以①正確;②若,則C是圓,其半徑為:,不一定是,所以②不正確;③若,則C是雙曲線,其漸近線方程為,化簡(jiǎn)可得,所以③正確;④若,,方程化為,則C是兩條直線,所以④正確;故答案為:①③④14、a>b【解題分析】構(gòu)造函數(shù)F(x)=xf(x),利用F(x)的單調(diào)性求解即可.【題目詳解】設(shè)函數(shù)F(x)=xf(x),∴F′(x)=f(x)+xf′(x)>0,∴F(x)=xf(x)在R上為增函數(shù),又∵30.3>1,logπ3<1,∴30.3>logπ3,∴F(30.3)>F(logπ3),∴(30.3)f(30.3)>(logπ3)f(logπ3),∴a>b.故答案為:a>b.15、【解題分析】根據(jù)被積函數(shù)()表示一個(gè)半圓,利用定積分的幾何意義即可得解.【題目詳解】被積函數(shù)()表示圓心為,半徑為2的圓的上半部分,所以.故答案為:.【題目點(diǎn)撥】本題考查了利用定積分的幾何意義來(lái)求定積分,在用該方法求解時(shí)需注意被積函數(shù)的在給定區(qū)間內(nèi)的函數(shù)值符號(hào),本題屬于中檔題.16、1717【解題分析】利用等差數(shù)列的前項(xiàng)和公式可求所有數(shù)的和.【題目詳解】100以內(nèi)的正整數(shù)中,被3除余1由小到大構(gòu)成等差數(shù)列,其首項(xiàng)為1,公差為3,共有項(xiàng),它們的和為,故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解題分析】(1)設(shè)點(diǎn)的坐標(biāo)為,由,結(jié)合兩點(diǎn)間的距離公式,列出式子,可求出軌跡方程;(2)易知,且,可求出到直線的距離,結(jié)合點(diǎn)到直線的距離為,可求出直線的斜率【題目詳解】(1)設(shè)點(diǎn)的坐標(biāo)為,由,可得,整理得,所以所求曲線的軌跡方程為(2)依題意,,且,在△中,,取的中點(diǎn),連結(jié),則,所以,即點(diǎn)到直線:的距離為,解得,所以所求直線斜率為【題目點(diǎn)撥】本題考查軌跡方程,考查直線的斜率,考查兩點(diǎn)間的距離公式、點(diǎn)到直線的距離公式的應(yīng)用,考查學(xué)生的計(jì)算求解能力,屬于基礎(chǔ)題.18、(1)0.040;(2)750;(3)76.5.【解題分析】(1)由頻率分布直方圖的性質(zhì)列出方程,能求出圖中的值;(2)先求出競(jìng)賽分?jǐn)?shù)不少于70分的頻率,由此能估計(jì)總體1000人中競(jìng)賽分?jǐn)?shù)不少于70分的人數(shù);(3)由頻率分布直方圖的性質(zhì)能估計(jì)總體1000人的競(jìng)賽分?jǐn)?shù)的平均數(shù)【題目詳解】(1)由頻率分布直方圖得:,解得圖中的值為0.040(2)競(jìng)賽分?jǐn)?shù)不少于70分的頻率為:,估計(jì)總體1000人中競(jìng)賽分?jǐn)?shù)不少于70分的人數(shù)為(3)假設(shè)同組中的每個(gè)數(shù)據(jù)都用該組區(qū)間的中點(diǎn)值代替,估計(jì)總體1000人的競(jìng)賽分?jǐn)?shù)的平均數(shù)為:【題目點(diǎn)撥】本題主要考查頻率、頻數(shù)、平均數(shù)的求法,考查頻率分布直方圖的性質(zhì)等基礎(chǔ)知識(shí),意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平19、(1)甲更好,詳細(xì)見解析(2)【解題分析】(1)根據(jù)頻率分布直方圖計(jì)算甲、乙兩條生產(chǎn)線所生產(chǎn)產(chǎn)品的質(zhì)量指數(shù)的平均數(shù),比較大小即可得答案;(2)由題意可知,甲、乙生產(chǎn)線的樣品中優(yōu)等品件數(shù),利用分層抽樣可得從甲生產(chǎn)線的樣品中抽取的優(yōu)等品有件件,記為,從乙生產(chǎn)線的樣品中抽取的優(yōu)等品有件,記為;列出抽取到的2件產(chǎn)品的所有基本事件,根據(jù)古典概型計(jì)算即可.【小問(wèn)1詳解】解:甲生產(chǎn)線所生產(chǎn)產(chǎn)品的質(zhì)量指數(shù)的平均數(shù)為:=3×0.05×2+5×0.15×2+7×0.2×2+9×0.1×2=6.4;乙生產(chǎn)線所生產(chǎn)產(chǎn)品的質(zhì)量指數(shù)的平均數(shù)為:=3×0.15×2+5×0.1×2+7×0.2×2+9×0.05×2=5.6因?yàn)?,所以甲生產(chǎn)線生產(chǎn)產(chǎn)品質(zhì)量的平均水平高于乙生產(chǎn)線生產(chǎn)產(chǎn)品質(zhì)量的平均水平,故甲生產(chǎn)線所生產(chǎn)產(chǎn)品的質(zhì)量更好.【小問(wèn)2詳解】由題意可知,甲生產(chǎn)線的樣品中優(yōu)等品有件,乙生產(chǎn)線的樣品中優(yōu)等品有件,從甲生產(chǎn)線的樣品中抽取的優(yōu)等品有件件,記為,從乙生產(chǎn)線的樣品中抽取的優(yōu)等品有件,記為;從這6件產(chǎn)品中隨機(jī)抽取2件的情況有:(a,b),(a,c),(a,d),(a,E),(a,F(xiàn)),(b,c),(b,d),(b,E),(b,F(xiàn)),(c,d),(c,E),(c,F(xiàn)),(d,E),(d,F(xiàn)),(E,F(xiàn)),共15種;其中符合條件的情況有:(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),共6種.故抽取到的2件產(chǎn)品都是甲生產(chǎn)線生產(chǎn)的概率為:20、(1);(2)證明見解析.【解題分析】(1)由題可得,,即求;(2)由題可設(shè)直線方程與雙曲線方程聯(lián)立,利用韋達(dá)定理法即證【小問(wèn)1詳解】由題意可知在雙曲線C中,,,,解得所以雙曲線C的方程為;【小問(wèn)2詳解】證法一:由題可知,設(shè)直線,,,由,得,則,,∴,,;當(dāng)直線的斜率不存在時(shí),,此時(shí).綜上,為定值證法二:設(shè)直線PQ方程為,,,聯(lián)立得整理得,由過(guò)右焦點(diǎn)F的直線l與雙曲線C的右支交于P,Q兩點(diǎn),則解得,,,,由雙曲線方程可得,,,,∵,∴,,證法三:設(shè)直線PQ方程為,,,聯(lián)立得整理得,由過(guò)右焦點(diǎn)F的直線
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 眼鏡行業(yè)銷售工作總結(jié)
- 酒水飲料行業(yè)員工激勵(lì)措施
- 2024年電大電子商務(wù)概論考試綜合手冊(cè)
- 創(chuàng)意設(shè)計(jì)服務(wù)協(xié)議書(2篇)
- 易錯(cuò)點(diǎn)12 抗日戰(zhàn)爭(zhēng)時(shí)期的主要史實(shí)與時(shí)間-備戰(zhàn)2023年中考?xì)v史考試易錯(cuò)題(原卷版)
- 黃金卷6-【贏在中考·黃金八卷】(解析版)
- DB33T 2195-2019 家庭醫(yī)生簽約服務(wù)居家護(hù)理工作規(guī)范
- 以社區(qū)為基礎(chǔ)之糖尿病個(gè)案管理與疾病管理
- 2022-2023學(xué)年山東省聊城市高一上學(xué)期期末考試地理試題(解析版)
- 阜陽(yáng)熱熔膠項(xiàng)目可行性研究報(bào)告
- 全文解讀改革開放簡(jiǎn)史專題解讀
- 熱電廠工程燃煤系統(tǒng)施工方案
- 福建省南平市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名明細(xì)及行政區(qū)劃代碼
- 一年級(jí)計(jì)算題連加連減
- 金融科技課件(完整版)
- 中國(guó)建筑史經(jīng)典題型
- 計(jì)算機(jī)信息系統(tǒng)分級(jí)保護(hù)方案
- 頂管施工技術(shù)全面詳解
- 公路工程質(zhì)量檢驗(yàn)評(píng)定標(biāo)準(zhǔn)(交安部分)
- 東北石油大學(xué)學(xué)業(yè)預(yù)警、留級(jí)與退學(xué)制度修訂情況說(shuō)明
- Consent-Letter-for-Children-Travelling-Abroad
評(píng)論
0/150
提交評(píng)論