湖南省長沙二十一中2024屆高二數(shù)學第一學期期末考試模擬試題含解析_第1頁
湖南省長沙二十一中2024屆高二數(shù)學第一學期期末考試模擬試題含解析_第2頁
湖南省長沙二十一中2024屆高二數(shù)學第一學期期末考試模擬試題含解析_第3頁
湖南省長沙二十一中2024屆高二數(shù)學第一學期期末考試模擬試題含解析_第4頁
湖南省長沙二十一中2024屆高二數(shù)學第一學期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖南省長沙二十一中2024屆高二數(shù)學第一學期期末考試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在正方體中,E為的中點,則直線與平面所成角的正弦值為()A. B.C. D.2.已知P是直線上的動點,PA,PB是圓的切線,A,B為切點,C為圓心,那么四邊形PACB的面積的最小值是()A2 B.C.3 D.3.直線的傾斜角為()A. B.C. D.4.不等式的一個必要不充分條件是()A. B.C. D.5.在直三棱柱中,,,則直線與所成角的大小為()A.30° B.60°C.120° D.150°6.函數(shù)的大致圖象是()A. B.C. D.7.“直線的斜率不大于0”是“直線的傾斜角為鈍角”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.設(shè)等差數(shù)列的前n項和為,若,,則()A.60 B.80C.90 D.1009.命題P:ax2+2x﹣1=0有實數(shù)根,若¬p是假命題,則實數(shù)a的取值范圍是()A.{a|a<1} B.{a|a≤﹣1}C.{a|a≥﹣1} D.{a|a>﹣1}10.命題:“,”的否定形式為()A., B.,C., D.,11.已知為等比數(shù)列的前n項和,,,則()A.30 B.C. D.30或12.已知函數(shù),則函數(shù)在區(qū)間上的最小值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.直線與直線的夾角大小等于_______14.數(shù)列滿足前項和,則數(shù)列的通項公式為_____________15.在數(shù)列中,,,則數(shù)列的前6項和為___________.16.已知,則曲線在點處的切線方程是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在棱長為3的正方體中,分別是上的點且(1)求證:;(2)求平面與平面的夾角的余弦值18.(12分)已知橢圓的離心率為,且過點.(1)求橢圓的方程;(2)四邊形的頂點在橢圓上,且對角線,均過坐標原點,若,求的取值范圍.19.(12分)已知命題:“,”,命題:“,”,若“且”為真命題,求實數(shù)的取值范圍20.(12分)已知拋物線C的頂點在坐標原點,焦點在x軸上,點在拋物線C上(1)求拋物線C的方程;(2)過拋物線C焦點F的直線l交拋物線于P,Q兩點,若求直線l的方程21.(12分)已知數(shù)列為等差數(shù)列,是公比為2的等比數(shù)列,且滿足(1)求數(shù)列和的通項公式;(2)令求數(shù)列的前n項和;22.(10分)雙曲線,離心率,虛軸長為2(1)求雙曲線的標準方程;(2)經(jīng)過點的直線與雙曲線相交于兩點,且為的中點,求直線的方程

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】構(gòu)建空間直角坐標系,求直線的方向向量、平面的法向量,應(yīng)用空間向量的坐標表示,求直線與平面所成角的正弦值.【題目詳解】以點D為坐標原點,向量分別為x,y,z軸建立空間直角坐標系,則,,,,可得,,,設(shè)面的法向量為,有,取,則,所以,,,則直線與平面所成角的正弦值為故選:D.2、D【解題分析】由圓C的標準方程可得圓心為(1,1),半徑為1,根據(jù)切線的性質(zhì)可得四邊形PACB面積等于,,故求解最小時即可確定四邊形PACB面積的最小值.【題目詳解】圓C:x2+y2-2x-2y+1=0即,表示以C(1,1)為圓心,以1為半徑的圓,由于四邊形PACB面積等于2×××=,而,故當最小時,四邊形PACB面積最小,又的最小值等于圓心C到直線l:的距離d,而,故四邊形PACB面積的最小值為,故選:D3、D【解題分析】由直線斜率概念可寫出傾斜角的正切值,進而可求出傾斜角.【題目詳解】因為直線的斜率為,所以傾斜角.故選D【題目點撥】本題主要考查直線的傾斜角,由斜率的概念,即可求出結(jié)果.4、B【解題分析】解不等式,由此判斷必要不充分條件.【題目詳解】,解得,所以不等式的一個必要不充分條件是.故選:B5、B【解題分析】根據(jù)三棱柱的特征補全為正方體,則,為直線與所成角,連接,則為等邊三角形即可得解.【題目詳解】根據(jù)直三棱柱的特征,補全可得如圖所示的正方體,易知,為直線與所成角,連接,則為等邊三角形,所以,所以直線與所成角的大小為.故選:B6、A【解題分析】由得出函數(shù)是奇函數(shù),再求得,,運用排除法可得選項.【題目詳解】法一:由函數(shù),則,所以函數(shù)為奇函數(shù),圖象關(guān)于原點對稱,所以排除B;因為,所以排除D;因為,所以排除C,故選:A.【題目點撥】思路點睛:函數(shù)圖象的辨識可從以下方面入手:(1)從函數(shù)的定義域,判斷圖象的左右位置;從函數(shù)的值域,判斷圖象的上下位置(2)從函數(shù)的單調(diào)性,判斷圖象的變化趨勢;(3)從函數(shù)的奇偶性,判斷圖象的對稱性;(4)從函數(shù)的特征點,排除不合要求的圖象.7、B【解題分析】直線傾斜角的范圍是[0°,180°),直線斜率為傾斜角(不為90°)的正切值,據(jù)此即可判斷求解.【題目詳解】直線的斜率不大于0,則直線l斜率可能等于零,此時直線傾斜角為0°,不為鈍角,故“直線的斜率不大于0”不是“直線的傾斜角為鈍角”充分條件;直線的傾斜角為鈍角時,直線的斜率為負,滿足直線的斜率不大于0,即“直線的傾斜角為鈍角”是“直線的斜率不大于0”的充分條件,“直線的斜率不大于0”是“直線的傾斜角為鈍角”的必要條件;綜上,“直線的斜率不大于0”是“直線的傾斜角為鈍角”的必要不充分條件.故選:B.8、D【解題分析】由題設(shè)條件求出,從而可求.【題目詳解】設(shè)公差為,因為,,故,解得,故,故選:D.9、C【解題分析】根據(jù)是假命題,判斷出是真命題.對分成,和兩種情況,結(jié)合方程有實數(shù)根,求得的取值范圍.詳解】┐p是假命題,則p是真命題,∴ax2+2x﹣1=0有實數(shù)根,當a=0時,方程為2x﹣1=0,解得x=0.5,有根,符合題意;當a≠0時,方程有根,等價于△=4+4a≥0,∴a≥﹣1且,綜上所述,a的可能取值為a≥﹣1故選:C【題目點撥】本小題主要考查根據(jù)命題否定的真假性求參數(shù),屬于基礎(chǔ)題.10、D【解題分析】根據(jù)含一個量詞的命題的否定方法直接得到結(jié)果.【題目詳解】因為全稱命題的否定是特稱命題,所以命題:“,”的否定形式為:,,故選:D.【題目點撥】本題考查全稱命題的否定,難度容易.含一個量詞的命題的否定方法:修改量詞,否定結(jié)論.11、A【解題分析】利用等比數(shù)列基本量代換代入,列方程組,即可求解.【題目詳解】由得,則等比數(shù)列的公比,則得,令,則即,解得或(舍去),,則故選:A12、B【解題分析】根據(jù)已知條件求得以及,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,即可求得函數(shù)在區(qū)間上的最小值.【題目詳解】因為,故可得,則,又,令,解得,令,解得,故在單調(diào)遞減,在單調(diào)遞增,又,故在區(qū)間上的最小值為.故選:.二、填空題:本題共4小題,每小題5分,共20分。13、##【解題分析】根據(jù)直線的傾斜角可得答案.【題目詳解】直線是與軸平行的直線,直線的斜率為1,即與軸的夾角為角,故直線與直線的夾角大小等于.故答案為:.14、【解題分析】由已知中前項和,結(jié)合,分別討論時與時的通項公式,并由時,的值不滿足時的通項公式,故要將數(shù)列的通項公式寫成分段函數(shù)的形式【題目詳解】∵數(shù)列前項和,∴當時,,又∵當時,,故,故答案為.【題目點撥】本題考查的知識點是等差數(shù)列的通項公式,其中正確理解由數(shù)列的前n項和Sn,求通項公式的方法和步驟是解答本題的關(guān)鍵15、129【解題分析】依次寫出前6項,即可求得數(shù)列的前6項和.【題目詳解】數(shù)列中,,則,,,則數(shù)列的前6項和為故答案為:12916、【解題分析】求導(dǎo),得到,寫出切線方程.【題目詳解】因為,所以,則,所以曲線在點處的切線方程是,即,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解題分析】(1)建立空間直角坐標系后得到相關(guān)向量,再運用數(shù)量積證明;(2)求出相關(guān)平面的法向量,再運用夾角公式計算即可.【小問1詳解】建立如下圖所示的空間直角坐標系:,,,,,∴,故.【小問2詳解】,,,設(shè)平面的一個法向量為,由,令,則,取平面的一個法向量為,設(shè)平面與平面夾角為,易知:為銳角,故,即平面與平面夾角的余弦值為.18、(1)(2)【解題分析】(1)根據(jù)橢圓的離心率為,且過點,由求解;(2)設(shè)直線AC方程為,則直線BD的方程為,分時,與橢圓方程聯(lián)立求得A,B的坐標,再利用數(shù)量積求解.【小問1詳解】解:因為橢圓的離心率為,且過點,所以,所以,所以橢圓的方程為;【小問2詳解】設(shè)直線AC的方程為,則直線BD的方程為.當時,聯(lián)立,得,不妨設(shè)A,聯(lián)立,得,當B時,,,當B時,,,當時,同理可得上述結(jié)論.綜上,19、或【解題分析】先分別求出,為真時,的范圍;再求交集,即可得出結(jié)果.【題目詳解】若是真命題.則對任意恒成立,∴;若為真命題,則方程有實根,∴,解得或,由題意,真也真,∴或即實數(shù)的取值范圍是或.20、(1)(2)或【解題分析】(1)把點的坐標代入方程即可;(2)設(shè)直線方程,解聯(lián)立方程組,消未知數(shù),得到一元二次方程,再利用韋達定理和已知條件求斜率.【小問1詳解】因為拋物線C的頂點在原點,焦點在x軸上,所以設(shè)拋物線方程為又因為點在拋物線C上,所以,解得,所以拋物線的方程為;【小問2詳解】拋物線C的焦點為,當直線l的斜率不存在時,,不符合題意;當直線l的斜率存在時,設(shè)直線l的方程為,設(shè)直線l交拋物線的兩點坐標為,,由得,,,,由拋物線得定義可知,所以,解得,即,所以直線l的方程為或21、(1),(2)【解題分析】(1)根據(jù)等差數(shù)列和等比數(shù)列通項公式得到,根據(jù)通項公式的求法得到結(jié)果;(2)分組求和即可.【小問1詳解】設(shè)的公差為,由已知,有解得,所以的通項公式為,的通項公式為.【小

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論