福建省南安市國光中學(xué)2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第1頁
福建省南安市國光中學(xué)2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第2頁
福建省南安市國光中學(xué)2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第3頁
福建省南安市國光中學(xué)2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第4頁
福建省南安市國光中學(xué)2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

福建省南安市國光中學(xué)2024學(xué)年高二數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.《周髀算經(jīng)》中有這樣一個問題:冬至、小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣,自冬至日起,其日影長依次成等差數(shù)列,立春當(dāng)日日影長為9.5尺,立夏當(dāng)日日影長為2.5尺,則冬至當(dāng)日日影長為()A.12.5尺 B.13尺C.13.5尺 D.14尺2.拋物線上有兩個點(diǎn),焦點(diǎn),已知,則線段的中點(diǎn)到軸的距離是()A.1 B.C.2 D.3.在正方體中,下列幾種說法不正確的是A. B.B1C與BD所成的角為60°C.二面角的平面角為 D.與平面ABCD所成的角為4.甲、乙兩組數(shù)的數(shù)據(jù)如莖葉圖所示,則甲、乙的平均數(shù)、方差、極差及中位數(shù)相同的是()A.極差 B.方差C.平均數(shù) D.中位數(shù)5.從某個角度觀察籃球(如圖1),可以得到一個對稱的平面圖形,如圖2所示,籃球的外輪形為圓O,將籃球表面的粘合線看成坐標(biāo)軸和雙曲線,若坐標(biāo)軸和雙曲線與圓O的交點(diǎn)將圓O的周長八等分,AB=BC=CD,則該雙曲線的離心率為()A. B.C. D.6.在等差數(shù)列中,為其前n項(xiàng)和,,則()A.55 B.65C.15 D.607.已知a,b為不相等實(shí)數(shù),記,則M與N的大小關(guān)系為()A. B.C. D.不確定8.函數(shù)在區(qū)間上平均變化率等于()A. B.C. D.9.已知曲線,則“”是“C為雙曲線”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.①命題設(shè)“,若,則或”;②若“”為真命題,則p,q均為真命題;③“”是函數(shù)為偶函數(shù)的必要不充分條件;④若為空間的一個基底,則構(gòu)成空間的另一基底;其中正確判斷的個數(shù)是()A.1 B.2C.3 D.411.已知圓C的圓心在直線上,且與直線相切于點(diǎn),則圓C方程為()A. B.C. D.12.過雙曲線右焦點(diǎn)F作雙曲線一條漸近線的垂線,垂足為A,與另一條漸近線交于點(diǎn)B,若,則雙曲線C的離心率為()A.或 B.2或C.或 D.2或二、填空題:本題共4小題,每小題5分,共20分。13.如圖所示,直線是曲線在點(diǎn)處的切線,則__________.14.已知雙曲線的右焦點(diǎn)為,過點(diǎn)作軸的垂線,在第一象限與雙曲線及其漸近線分別交于,兩點(diǎn).若,則雙曲線的離心率為___________.15.已知雙曲線,則圓的圓心C到雙曲線漸近線的距離為______16.已知球的表面積是,則該球的體積為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在①,②,③,三個條件中任選一個,補(bǔ)充在下面的問題中,并解答.設(shè)數(shù)列是公比大于0的等比數(shù)列,其前項(xiàng)和為,數(shù)列是等差數(shù)列,其前項(xiàng)和為.已知,,,_____________.(1)請寫出你選擇條件的序號____________;并求數(shù)列和的通項(xiàng)公式;(2)求和.18.(12分)已知向量,(1)求;(2)求;(3)若(),求的值19.(12分)某廠有4臺大型機(jī)器,在一個月中,一臺機(jī)器至多出現(xiàn)1次故障,出現(xiàn)故障時需1名工人進(jìn)行維修,且每臺機(jī)器是否出現(xiàn)故障是相互獨(dú)立的,每臺機(jī)器出現(xiàn)故障的概率為(1)若出現(xiàn)故障的機(jī)器臺數(shù)為X,求X的分布列;(2)已知一名工人每月只有維修1臺機(jī)器的能力,每月需支付給每位工人1萬元的工資,每臺機(jī)器不出現(xiàn)故障或出現(xiàn)故障時能及時維修,都產(chǎn)生5萬元的利潤,否則將不產(chǎn)生利潤.若該廠在雇傭維修工人時,要保證在任何時刻多臺機(jī)器同時出現(xiàn)故障能及時進(jìn)行維修的概率不小于90%,雇傭幾名工人使該廠每月獲利最大?20.(12分)在如圖所示的幾何體中,四邊形是平行四邊形,,,,四邊形是矩形,且平面平面,,點(diǎn)是線段上的動點(diǎn)(1)證明:;(2)設(shè)平面與平面的夾角為,求的最小值21.(12分)p:函數(shù)在區(qū)間是遞增的;q:方程有實(shí)數(shù)解.(1)若p為真命題,求m的取值范圍;(2)若“”為真,“”為假,求m的取值范圍.22.(10分)已知直線經(jīng)過點(diǎn),且滿足下列條件,求相應(yīng)的方程.(1)過點(diǎn);(2)與直線垂直.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】設(shè)十二節(jié)氣自冬至日起的日影長構(gòu)成的等差數(shù)列為,利用等差數(shù)列的性質(zhì)即可求解.【題目詳解】設(shè)十二節(jié)氣自冬至日起的日影長構(gòu)成的等差數(shù)列為,則立春當(dāng)日日影長為,立夏當(dāng)日日影長為,故所以冬至當(dāng)日日影長為.故選:B2、B【解題分析】利用拋物線的定義,將拋物線上的點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為點(diǎn)到準(zhǔn)線的距離,即可求出線段中點(diǎn)的橫坐標(biāo),即得到答案.【題目詳解】由已知可得拋物線的準(zhǔn)線方程為,設(shè)點(diǎn)的坐標(biāo)分別為和,由拋物線的定義得,即,線段中點(diǎn)的橫坐標(biāo)為,故線段的中點(diǎn)到軸的距離是.故選:.3、D【解題分析】在正方體中,利用線面關(guān)系逐一判斷即可.【題目詳解】解:對于A,連接AC,則AC⊥BD,A1C1∥AC,∴A1C1⊥BD,故A正確;對于B,∵B1C∥D,即B1C與BD所成的角為∠DB,連接△DB為等邊三角形,∴B1C與BD所成的角為60°,故B正確;對于C,∵BC⊥平面A1ABB1,A1B?平面A1ABB1,∴BC⊥A1B,∵AB⊥BC,平面A1BC∩平面BCD=BC,A1B?平面A1BC,AB?平面BCD,∴∠ABA1是二面角A1﹣BC﹣D的平面角,∵△A1AB是等腰直角三角形,∴∠ABA1=45°,故C正確;對于D,∵C1C⊥平面ABCD,AC1∩平面ABCD=A,∴∠C1AC是AC1與平面ABCD所成的角,∵AC≠C1C,∴∠C1AC≠45°,故D錯誤故選D【題目點(diǎn)撥】本題考查了線面的空間位置關(guān)系及空間角,做出圖形分析是關(guān)鍵,考查推理能力與空間想象能力4、C【解題分析】根據(jù)莖葉圖依次計算甲和乙的平均數(shù)、方差、中位數(shù)和極差即可得到結(jié)果.【題目詳解】甲的平均數(shù)為:;乙的平均數(shù)為:;甲和乙的平均數(shù)相同;甲的方差為:;乙的方差為:;甲和乙的方差不相同;甲的極差為:;乙的極差為:;甲和乙的極差不相同;甲的中位數(shù)為:;乙的中位數(shù)為:;甲和乙的中位數(shù)不相同.故選:C.5、D【解題分析】設(shè)出雙曲線方程,通過做標(biāo)準(zhǔn)品和雙曲線與圓O的交點(diǎn)將圓的周長八等分,且AB=BC=CD,推出點(diǎn)在雙曲線上,然后求出離心率即可.【題目詳解】設(shè)雙曲線的方程為,則,因?yàn)锳B=BC=CD,所以,所以,因?yàn)樽鴺?biāo)軸和雙曲線與圓O的交點(diǎn)將圓O的周長八等分,所以在雙曲線上,代入可得,解得,所以雙曲線的離心率為.故選:D6、B【解題分析】根據(jù)等差數(shù)列求和公式結(jié)合等差數(shù)列的性質(zhì)即可求得.【題目詳解】解析:因?yàn)闉榈炔顢?shù)列,所以,即,.故選:B7、A【解題分析】利用作差法即可比較M與N的大小﹒【題目詳解】因?yàn)椋?,所以,即故選:A8、C【解題分析】根據(jù)平均變化率的定義算出答案即可.【題目詳解】函數(shù)在區(qū)間上的平均變化率等于故選:C9、A【解題分析】根據(jù)充分必要條件的定義,以及雙曲線的標(biāo)準(zhǔn)方程進(jìn)行判斷可得選項(xiàng)【題目詳解】解:當(dāng)時,表示雙曲線,當(dāng)表示雙曲線時,則,所以“”是“C為雙曲線”的充分不必要條件.故選A10、B【解題分析】利用逆否命題、含有邏輯聯(lián)結(jié)詞命題的真假性、充分和必要條件、空間基底等知識對四個判斷進(jìn)行分析,由此確定正確答案.【題目詳解】①,原命題的逆否命題為“,若且,則”,逆否命題是真命題,所以原命題是真命題,①正確.②,若“”為真命題,則p,q至少有一個真命題,②錯誤.③,函數(shù)為偶函數(shù)的充要條件是“”.所以“”是函數(shù)為偶函數(shù)的充分不必要條件,③錯誤.④,若為空間的一個基底,即不共面,若共面,則存在不全為零的,使得,故,因?yàn)闉榭臻g的一個基底,,故,矛盾,故不共面,所以構(gòu)成空間的另一基底,④正確.所以正確的判斷是個.故選:B11、C【解題分析】設(shè)出圓心坐標(biāo),根據(jù)垂直直線的斜率關(guān)系求得圓心坐標(biāo),結(jié)合兩點(diǎn)距離公式得半徑,即可得圓方程【題目詳解】設(shè)圓心為,則圓心與點(diǎn)的連線與直線l垂直,即,則點(diǎn),所以圓心為,半徑,所以方程為,故選:C12、D【解題分析】求得點(diǎn)A,B的坐標(biāo),利用轉(zhuǎn)化為坐標(biāo)比求解.【題目詳解】不妨設(shè)直線,由題意得,解得,即;由得,即,因?yàn)椋?,所以?dāng)時,,;當(dāng)時,,則,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、##【解題分析】利用直線所過點(diǎn)求得直線的斜率,從而求得.【題目詳解】由圖象可知直線過,所以直線的斜率為,所以.故答案為:14、【解題分析】按題意求得,兩點(diǎn)坐標(biāo),以代數(shù)式表達(dá)出條件,即可得到關(guān)于的關(guān)系式,進(jìn)而解得雙曲線的離心率.【題目詳解】雙曲線的右焦點(diǎn)為,其漸近線為,垂線方程為,則,,,由,得,即即,則,離心率故答案為:15、2【解題分析】求出圓心和雙曲線的漸近線方程,即得解.【題目詳解】解:由題得圓的圓心為,雙曲線的漸近線方程為,即.所以圓心到雙曲線漸近線的距離為.故答案為:216、【解題分析】設(shè)球的半徑為r,代入表面積公式,可解得,代入體積公式,即可得答案.【題目詳解】設(shè)球的半徑為r,則表面積,解得,所以體積,故答案為:【題目點(diǎn)撥】本題考查已知球的表面積求體積,關(guān)鍵是求出半徑,再進(jìn)行求解,考查基礎(chǔ)知識掌握程度,屬基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)選①,,;選②,,;選③,,;(2),【解題分析】(1)選條件①根據(jù)等比數(shù)列列出方程求出公比得通項(xiàng)公式,再由等差數(shù)列列出方程求出首項(xiàng)與公差可得通項(xiàng)公式,選②③與①相同的方法求數(shù)列的通項(xiàng)公式;(2)根據(jù)等比數(shù)列、等差數(shù)列的求和公式解計算即可.【小問1詳解】選條件①:設(shè)等比數(shù)列的公比為q,,,解得或,,,.設(shè)等差數(shù)列的公差為d,,,解得,,.選條件②:設(shè)等比數(shù)列的公比為q,,,解得或,,,.設(shè)等差數(shù)列的公差為,,,解得,,選條件③:設(shè)等比數(shù)列的公比為,,,解得或,,,.設(shè)等差數(shù)列的公差為,,,解得,【小問2詳解】由(1)知,,18、(1)(2)(3)【解題分析】(1)根據(jù)向量數(shù)量積的坐標(biāo)表示即可得解;(2)求出,再根據(jù)空間向量的模的坐標(biāo)表示即可得解;(3)由,可得,再根據(jù)數(shù)量積的運(yùn)算律即可得解.【小問1詳解】解:;【小問2詳解】解:;【小問3詳解】解:因?yàn)?,所以,即,解?19、(1)答案見解析(2)雇傭3名【解題分析】(1)設(shè)出現(xiàn)故障的機(jī)器臺數(shù)為X,由題意知,即可由二項(xiàng)分布求解;(2)設(shè)該廠雇傭n名工人,n可取0、1、2、3、4,先求出保證在任何時刻多臺機(jī)器同時出現(xiàn)故障能及時進(jìn)行維修的概率不小于90%需要至少3人,再分別計算3人,4人時的獲利即可得解.【小問1詳解】每臺機(jī)器運(yùn)行是否出現(xiàn)故障看作一次實(shí)驗(yàn),在一次試驗(yàn)中,機(jī)器出現(xiàn)故障的概率為,4臺機(jī)器相當(dāng)于4次獨(dú)立試驗(yàn)設(shè)出現(xiàn)故障的機(jī)器臺數(shù)為X,則,,,,,,則X的分布列為:X01234P【小問2詳解】設(shè)該廠雇傭n名工人,n可取0、1、2、3、4,設(shè)“在任何時刻多臺機(jī)器同時出現(xiàn)故障能及時進(jìn)行維修”的概率為,則:n01234P1∵,∴至少要3名工人,才能保證在任何時刻多臺機(jī)器同時出現(xiàn)故障時能及時進(jìn)行維修的概率不小于90%當(dāng)該廠雇傭3名工人時,設(shè)該廠獲利為Y萬元,則Y的所有可能取值為17,12,,,∴Y的分布列為:Y1712P∴,∴該廠獲利的均值為16.9萬元當(dāng)該廠雇傭4名工人時,4臺機(jī)器在任何時刻同時出現(xiàn)故障時能及時進(jìn)行維修的概率為100%,該廠獲利的均值為萬元∴若該廠要保證在任何時刻多臺機(jī)器同時出現(xiàn)故障能及時進(jìn)行維修的概率不小于90%時,雇傭3名工人使該廠每月獲利最大20、(1)證明見解析;(2).【解題分析】(1)要證,只需證平面,只需證(由勾股定理可證),,只需證平面,只需證(由平面平面可證),(由可證),即可證明結(jié)論.(2)以為原點(diǎn),所在直線分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系寫出點(diǎn)與點(diǎn)的坐標(biāo)由于軸,可設(shè),可得出與的坐標(biāo)設(shè)為平面的法向量,求出法向量.是關(guān)于的一個式子,求出的取值范圍,即可求出的最小值【小問1詳解】在中,,,,所以,所以所以是等腰直角三角形,即因?yàn)?,所以又因?yàn)槠矫嫫矫?,平面平面,,所以平面又平面,所以又因?yàn)?,EC,平面所以平面又平面,所以,所以在中,,,所以所以又因?yàn)?,,所以,所以又,,平面所以平面又平面,所以【小?詳解】以為原點(diǎn),所在直線分別為x軸,y軸,z軸,建立如圖所示的空間直角坐標(biāo)系則,因?yàn)檩S,可設(shè),可求得,設(shè)為平面的法向量則令,解得,所以又因?yàn)槭瞧矫娴姆ㄏ蛄克?,因?yàn)椋运援?dāng)時,取到最小值21、(1)(2)或【解題分析】(1)依題意在區(qū)間上恒成立,參變分離可得在區(qū)間上恒成立,再利用基本不等式計算可得;(2)首先求出命題為真時參數(shù)的取值范

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論