




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
福建省廈門市第一中學2024學年高二上數(shù)學期末檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.現(xiàn)有甲、乙、丙、丁、戊五位同學,分別帶著A、B、C、D、E五個不同的禮物參加“抽盲盒”學游戲,先將五個禮物分別放入五個相同的盒子里,每位同學再分別隨機抽取一個盒子,恰有一位同學拿到自己禮物的概率為()A. B.C. D.2.雙曲線的一條漸近線方程為,則雙曲線的離心率為()A.2 B.5C. D.3.從1,2,3,4,5中任取2個不同的數(shù),兩數(shù)和為偶數(shù)的概率為()A. B.C. D.4.已知,且,則的最大值為()A. B.C. D.5.如圖是拋物線拱形橋,當水面在時,拱頂離水面,水面寬,若水面上升,則水面寬是()(結(jié)果精確到)(參考數(shù)值:)A B.C. D.6.已知遞增等比數(shù)列的前n項和為,,且,則與的關(guān)系是()A. B.C. D.7.已知“”的必要不充分條件是“或”,則實數(shù)的最小值為()A. B.C. D.8.從1,2,3,4,5中隨機抽取三個數(shù),則這三個數(shù)能成為一個三角形三邊長的概率為()A. B.C. D.9.在x軸與y軸上截距分別為,2的直線的傾斜角為()A.45° B.135°C.90° D.180°10.已知三棱錐O-ABC,點M,N分別為AB,OC的中點,且,用表示,則等于()A. B.C. D.11.下列命題中正確的是()A.若為真命題,則為真命題B.在中“”是“”的充分必要條件C.命題“若,則或”的逆否命題是“若或,則”D.命題,使得,則,使得12.已知直線與直線垂直,則實數(shù)()A.10 B.C.5 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的左、右焦點分別為,雙曲線左支上點滿足,則的面積為_________14.已知是首項為,公差為1的等差數(shù)列,數(shù)列滿足,若對任意的,都有成立,則實數(shù)的取值范圍是________15.已知曲線,則曲線在點處的切線方程為______16.已知圓和直線.(1)求直線l所經(jīng)過的定點的坐標,并判斷直線與圓的位置關(guān)系;(2)求當k取什么值,直線被圓截得的弦最短,并求這條最短弦的長.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C的兩焦點分別為,長軸長為6⑴求橢圓C的標準方程;⑵已知過點(0,2)且斜率為1的直線交橢圓C于A、B兩點,求線段AB的長度18.(12分)曲線的左、右焦點分別為,左、右頂點分別為,C上的點M滿足,且直線的斜率之積等于(1)求C的方程;(2)過點的直線l交C于A,B兩點,若,其中,證明:19.(12分)已知圓C的圓心在y軸上,且過點,(1)求圓C的方程;(2)已知圓C上存在點M,使得三角形MAB的面積為,求點M的坐標20.(12分)在等差數(shù)列中,已知公差,且成等比數(shù)列(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和21.(12分)已知函數(shù),從下列兩個條件中選擇一個使得數(shù)列{an}成等比數(shù)列.條件1:數(shù)列{f(an)}是首項為4,公比為2的等比數(shù)列;條件2:數(shù)列{f(an)}是首項為4,公差為2的等差數(shù)列.(1)求數(shù)列{an}的通項公式;(2)求數(shù)列的前n項和.22.(10分)有時候一些東西吃起來口味越好,對我們的身體越有害.下表給出了不同品牌的一些食品所含熱量的百分比記為和一些美食家以百分制給出的對此種食品口味的評價分數(shù)記為:食品品牌12345678910所含熱量的百分比25342019262019241914百分制口味評價分數(shù)88898078757165626052參考數(shù)據(jù):,,,參考公式:,(1)已知這些品牌食品的所含熱量的百分比與美食家以百分制給出的對此種食品口味的評價分數(shù)具有相關(guān)關(guān)系.試求出回歸方程(最后結(jié)果精確到);(2)某人只能接受食品所含熱量百分比為及以下的食品.現(xiàn)在他想從這些食品中隨機選取兩種購買,求他所選取的兩種食品至少有一種是美食家以百分制給出的對此種食品口味的評價分數(shù)為分以上的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】利用排列組合知識求出每位同學再分別隨機抽取一個盒子,恰有一位同學拿到自己禮物的情況個數(shù),以及五人抽取五個禮物的總情況,兩者相除即可.【題目詳解】先從五人中抽取一人,恰好拿到自己禮物,有種情況,接下來的四人分為兩種情況,一種是兩兩一對,兩個人都拿到對方的禮物,有種情況,另一種是四個人都拿到另外一個人的禮物,不是兩兩一對,都拿到對方的情況,由種情況,綜上:共有種情況,而五人抽五個禮物總數(shù)為種情況,故恰有一位同學拿到自己禮物的概率為.故選:D2、D【解題分析】根據(jù)漸近線方程求得關(guān)系,結(jié)合離心率的計算公式,即可求得結(jié)果.【題目詳解】因為雙曲線的一條漸近線方程為,則;又雙曲線離心率.故選:D.3、B【解題分析】利用列舉法,結(jié)合古典概型概率計算公式,計算出所求概率.【題目詳解】從中任取個不同的數(shù)的方法有,共種,其中和為偶數(shù)的有共種,所以所求的概率為.故選:B【題目點撥】本小題主要考查古典概型概率計算,屬于基礎(chǔ)題.4、A【解題分析】由基本不等式直接求解即可得到結(jié)果.【題目詳解】由基本不等式知;(當且僅當時取等號),的最大值為.故選:A.5、C【解題分析】先建立直角坐標系,設(shè)拋物線方程為x2=my,將點坐標代入拋物線方程求出m,從而可得拋物線方程,再令y=代入拋物線方程求出x,即可得到答案【題目詳解】解:如圖建立直角坐標系,設(shè)拋物線方程為x2=my,由題意,將代入x2=my,得m=,所以拋物線的方程為x2=,令y=,解得,所以水面寬度為2.24×817.9m故選:C6、D【解題分析】設(shè)等比數(shù)列的公比為,由已知列式求得,再由等比數(shù)列的通項公式與前項和求解.【題目詳解】設(shè)等比數(shù)列的公比為,由,得,所以,又,所以,所以,,所以即故選:D7、A【解題分析】首先解不等式得到或,根據(jù)題意得到,再解不等式組即可.【題目詳解】,解得或,因為“”的必要不充分條件是“或”,所以.實數(shù)的最小值為.故選:A8、C【解題分析】列舉出所有情況,然后根據(jù)兩邊之和大于第三邊數(shù)出能構(gòu)成三角形的情況,進而得到答案.【題目詳解】5個數(shù)取3個數(shù)的所有情況如下:{1,2,3;1,2,4;1,2,5;1,3,4;1,3,5;1,4,5;2,3,4;2,3,5;2,4,5;3,4,5}共10種情況,而能構(gòu)成三角形的情況有{2,3,4;2,4,5;3,4,5}共3種情況,故所求概率.故選:C.9、A【解題分析】按照斜率公式計算斜率,即可求得傾斜角.【題目詳解】由題意直線過,設(shè)直線斜率為,傾斜角為,則,故.故選:A.10、D【解題分析】根據(jù)空間向量的加法、減法和數(shù)乘運算可得結(jié)果.【題目詳解】.故選:D11、B【解題分析】A選項,當一真一假時也滿足條件,但不滿足為真命題;B選項,可以使用正弦定理和大邊對大角,大角對大邊進行證明;C選項,利用逆否命題的定義進行判斷,D選項,特稱命題的否定,把存在改為任意,把結(jié)論否定,故可判斷D選項.【題目詳解】若為真命題,則可能均為真,或一真一假,則可能為真命題,也可能為假命題,故A錯誤;在中,由正弦定理得:,若,則,從而,同理,若,則由正弦定理得,,所以,故在中“”是“”的充分必要條件,B正確;命題“若,則或”的逆否命題是“若且,則”,故C錯誤;命題,使得,則,使得,故D錯誤.故選:B12、B【解題分析】根據(jù)兩直線垂直,列出方程,即可求解.【題目詳解】由題意,直線與直線垂直,可得,解得.故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、3【解題分析】由雙曲線方程可得,利用雙曲線定義,以及直角三角形的勾股定理可得,由此求得答案.【題目詳解】由雙曲線的左、右焦點分別為,雙曲線左支上點滿足,可得:,則,且,故,所以,故,故答案為:314、【解題分析】先求得,再得出,對于任意的,都有成立,說明是中的最小項【題目詳解】由題意,∴,易知函數(shù)在和上都是減函數(shù),且時,,即,時,,,由題意對于任意的,都有成立,則是最小項,∴,解得,故答案為:15、【解題分析】利用導數(shù)求出切線的斜率即得解.【題目詳解】解:由題得,所以切線的斜率為,所以切線的方程為即.故答案為:16、(1)直線過定點P(4,3),直線和圓總有兩個不同交點(2)k=1,【解題分析】(1)把直線方程化為點斜式方程即可;(2)由圓的性質(zhì)知,當直線與PC垂直時,弦長最短.【小問1詳解】直線方程可化為,則直線過定點P(4,3),又圓C標準方程為,圓心為,半徑為,而,所以點P在圓內(nèi),所以不論k取何值,直線和圓總有兩個不同交點.【小問2詳解】由圓的性質(zhì)知,當直線與PC垂直時,弦長最短.,所以k=1時弦長最短.弦長為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解題分析】(1)由焦點坐標可求c值,a值,然后可求出b的值.進而求出橢圓C的標準方程(2)先求出直線方程然后與橢圓方程聯(lián)立利用韋達定理及弦長公式求出|AB|的長度【題目詳解】解:⑴由,長軸長為6得:所以∴橢圓方程為⑵設(shè),由⑴可知橢圓方程為①,∵直線AB的方程為②把②代入①得化簡并整理得所以又【題目點撥】本題考查橢圓的方程和性質(zhì),考查韋達定理及弦長公式的應用,考查運算能力,屬于中檔題18、(1)(2)證明見解析【解題分析】(1)由橢圓定義可得到,再利用斜率公式及直線的斜率之積等于,列出方程,化簡對比系數(shù)可得;(2)分直線l的斜率為0和不為0兩種情況討論,利用可得到T在定直線上,且該直線是的中垂線即可得到證明.【小問1詳解】因為C上的點M滿足,所以C表示焦點在x軸上的橢圓,且,即,,所以,設(shè),則,①所以直線的斜率,直線的斜率,由已知得,即,②由①②得,所以C的方程為【小問2詳解】當直線l的斜率為0時,A與重合,B與重合,,,成立.當直線l的斜率不為0時,設(shè)l的方程為聯(lián)立方程組,消x整理得所以,解得或設(shè),則,由,得,所以設(shè),由,得,所以,所以,所以點T在直線上,且,所以是等腰三角形,且,所以,綜上,【題目點撥】關(guān)鍵點點晴:本題第二問突破點是證明T在定直線上,且該直線是的垂直平分線,從而得到,考查學生的數(shù)學運算能力,轉(zhuǎn)化化歸思想.19、(1);(2)或.【解題分析】(1)兩點式求AB所在直線的斜率,結(jié)合點坐標求AB的垂直平分線,根據(jù)已知確定圓心、半徑即可得圓C的方程;(2)求AB所在直線方程,幾何關(guān)系求弦長,由三角形面積求點線距離,設(shè)M所在直線為,由點線距離公式列方程求參數(shù),進而聯(lián)立直線與圓C求M的坐標【小問1詳解】由題意知,AB所在直線的斜率為,又,中點為,所以線段AB的垂直平分線為,即,聯(lián)立,得,半徑,所以圓C的方程為.【小問2詳解】由題意,AB所在直線方程為,即,圓心到直線AB的距離為,故,因為三角形MAB的面積為,則點M到直線AB的距離為,設(shè)點M所在直線方程為,所以,所以或,當時,聯(lián)立得:或,當時,聯(lián)立,無解;所以或20、(1)an=n(2)【解題分析】(1)由已知條件可得(d+2)2=2d+7,從而可求出公差,進而可求得數(shù)列的通項公式,(2)由(1)得,然后利用錯位相減法求【小問1詳解】因a1,a2+1,a3+6成等比數(shù)列,所以又a1=1,所以(d+2)2=2d+7,所以d=1或d=(舍),所以an=n;【小問2詳解】因為,所以,所以,所以所以21、(1)(2)【解題分析】(1)根據(jù)所給的條件分別計算后即可判斷,再通過滿足題意的求出通項;(2)由(1)可得,再通過錯位相減法求和即可.【小問1詳解】若選擇條件1,則有,可得,不滿足題意;若選擇條件2,則有,可得,滿足題意,故.【小問2詳解】由(1)可得,所以………①因此有……….②①②可得,即,化簡得.22、(1)(2)【解題分析】(1)首先求出、、,即可求出,從而求出回歸直線方程;(2)由表可知某人只能接受的食品
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 消防心理疏導技巧試題及答案
- 護理社區(qū)健康管理試題及答案
- 2025年入團考試實戰(zhàn)總結(jié)試題及答案
- 一級消防工程師溝通技巧提升試題及答案
- 2024年審計師考試中的職業(yè)道德要點試題及答案
- 護理細節(jié)管理試題及答案解析
- 中級審計師考試結(jié)構(gòu)清晰的試題及答案
- 消防安全教育活動試題及答案
- 2024年初級審計考試復習要點試題及答案
- 一級建造師考試備考資料更新試題及答案
- 《會計基礎(chǔ)與實務》課件-項目五 登記會計賬簿
- 2024初級注冊安全工程師筆試題庫答案分析
- 高房子與矮房子的比較與思考
- 國潮插畫文創(chuàng)設(shè)計
- 2025中國臨床腫瘤學會CSCO非小細胞肺癌診療指南要點解讀課件
- 塑料粒子購銷合同協(xié)議
- 無線電測向小學生課件
- 2025年上半年安徽國風新材料股份限公司招聘40人易考易錯模擬試題(共500題)試卷后附參考答案
- 碼頭項目事故案例
- 文化傳承-2025年中考語文作文常見十大母題寫作技巧與策略
- 銀行電梯安全管理制度
評論
0/150
提交評論