版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
云南省曲靖市會(huì)澤縣茚旺中學(xué)2024年高三數(shù)學(xué)第一學(xué)期期末綜合測試模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.正項(xiàng)等比數(shù)列中的、是函數(shù)的極值點(diǎn),則()A. B.1 C. D.22.已知拋物線,F(xiàn)為拋物線的焦點(diǎn)且MN為過焦點(diǎn)的弦,若,,則的面積為()A. B. C. D.3.已知雙曲線的左、右焦點(diǎn)分別為、,拋物線與雙曲線有相同的焦點(diǎn).設(shè)為拋物線與雙曲線的一個(gè)交點(diǎn),且,則雙曲線的離心率為()A.或 B.或 C.或 D.或4.已知函數(shù),則()A. B.1 C.-1 D.05.設(shè)為非零實(shí)數(shù),且,則()A. B. C. D.6.已知函數(shù)(,且)在區(qū)間上的值域?yàn)?,則()A. B. C.或 D.或47.已知集合A={x|y=lg(4﹣x2)},B={y|y=3x,x>0}時(shí),A∩B=()A.{x|x>﹣2}B.{x|1<x<2}C.{x|1≤x≤2}D.?8.已知雙曲線的右焦點(diǎn)為為坐標(biāo)原點(diǎn),以為直徑的圓與雙曲線的一條漸近線交于點(diǎn)及點(diǎn),則雙曲線的方程為()A. B. C. D.9.已知復(fù)數(shù),(為虛數(shù)單位),若為純虛數(shù),則()A. B.2 C. D.10.函數(shù)滿足對任意都有成立,且函數(shù)的圖象關(guān)于點(diǎn)對稱,,則的值為()A.0 B.2 C.4 D.111.已知函數(shù)是偶函數(shù),當(dāng)時(shí),函數(shù)單調(diào)遞減,設(shè),,,則的大小關(guān)系為()A. B. C. D.12.已知為虛數(shù)單位,若復(fù)數(shù),,則A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)全集,,,則______.14.已知函數(shù)為奇函數(shù),,且與圖象的交點(diǎn)為,,…,,則______.15.實(shí)數(shù)滿足,則的最大值為_____.16.若為假,則實(shí)數(shù)的取值范圍為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示的幾何體中,,四邊形為正方形,四邊形為梯形,,,,為中點(diǎn).(1)證明:;(2)求二面角的余弦值.18.(12分)等比數(shù)列中,.(Ⅰ)求的通項(xiàng)公式;(Ⅱ)記為的前項(xiàng)和.若,求.19.(12分)已知為等差數(shù)列,為等比數(shù)列,的前n項(xiàng)和為,滿足,,,.(1)求數(shù)列和的通項(xiàng)公式;(2)令,數(shù)列的前n項(xiàng)和,求.20.(12分)已知橢圓的離心率為,點(diǎn)在橢圓上.(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;(Ⅱ)設(shè)直線交橢圓于兩點(diǎn),線段的中點(diǎn)在直線上,求證:線段的中垂線恒過定點(diǎn).21.(12分)11月,2019全國美麗鄉(xiāng)村籃球大賽在中國農(nóng)村改革的發(fā)源地-安徽鳳陽舉辦,其間甲、乙兩人輪流進(jìn)行籃球定點(diǎn)投籃比賽(每人各投一次為一輪),在相同的條件下,每輪甲乙兩人在同一位置,甲先投,每人投一次球,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0分,設(shè)甲每次投球命中的概率為,乙每次投球命中的概率為,且各次投球互不影響.(1)經(jīng)過1輪投球,記甲的得分為,求的分布列;(2)若經(jīng)過輪投球,用表示經(jīng)過第輪投球,累計(jì)得分,甲的得分高于乙的得分的概率.①求;②規(guī)定,經(jīng)過計(jì)算機(jī)計(jì)算可估計(jì)得,請根據(jù)①中的值分別寫出a,c關(guān)于b的表達(dá)式,并由此求出數(shù)列的通項(xiàng)公式.22.(10分)自湖北武漢爆發(fā)新型冠狀病毒惑染的肺炎疫情以來,武漢醫(yī)護(hù)人員和醫(yī)療、生活物資嚴(yán)重缺乏,全國各地紛紛馳援.截至1月30日12時(shí),湖北省累計(jì)接收捐贈(zèng)物資615.43萬件,包括醫(yī)用防護(hù)服2.6萬套N95口軍47.9萬個(gè),醫(yī)用一次性口罩172.87萬個(gè),護(hù)目鏡3.93萬個(gè)等.中某運(yùn)輸隊(duì)接到給武漢運(yùn)送物資的任務(wù),該運(yùn)輸隊(duì)有8輛載重為6t的A型卡車,6輛載重為10t的B型卡車,10名駕駛員,要求此運(yùn)輸隊(duì)每天至少運(yùn)送720t物資.已知每輛卡車每天往返的次數(shù):A型卡車16次,B型卡車12次;每輛卡車每天往返的成本:A型卡車240元,B型卡車378元.求每天派出A型卡車與B型卡車各多少輛,運(yùn)輸隊(duì)所花的成本最低?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】
根據(jù)可導(dǎo)函數(shù)在極值點(diǎn)處的導(dǎo)數(shù)值為,得出,再由等比數(shù)列的性質(zhì)可得.【題目詳解】解:依題意、是函數(shù)的極值點(diǎn),也就是的兩個(gè)根∴又是正項(xiàng)等比數(shù)列,所以∴.故選:B【題目點(diǎn)撥】本題主要考查了等比數(shù)列下標(biāo)和性質(zhì)以應(yīng)用,屬于中檔題.2、A【解題分析】
根據(jù)可知,再利用拋物線的焦半徑公式以及三角形面積公式求解即可.【題目詳解】由題意可知拋物線方程為,設(shè)點(diǎn)點(diǎn),則由拋物線定義知,,則.由得,則.又MN為過焦點(diǎn)的弦,所以,則,所以.故選:A【題目點(diǎn)撥】本題考查拋物線的方程應(yīng)用,同時(shí)也考查了焦半徑公式等.屬于中檔題.3、D【解題分析】
設(shè),,根據(jù)和拋物線性質(zhì)得出,再根據(jù)雙曲線性質(zhì)得出,,最后根據(jù)余弦定理列方程得出、間的關(guān)系,從而可得出離心率.【題目詳解】過分別向軸和拋物線的準(zhǔn)線作垂線,垂足分別為、,不妨設(shè),,則,為雙曲線上的點(diǎn),則,即,得,,又,在中,由余弦定理可得,整理得,即,,解得或.故選:D.【題目點(diǎn)撥】本題考查了雙曲線離心率的求解,涉及雙曲線和拋物線的簡單性質(zhì),考查運(yùn)算求解能力,屬于中檔題.4、A【解題分析】
由函數(shù),求得,進(jìn)而求得的值,得到答案.【題目詳解】由題意函數(shù),則,所以,故選A.【題目點(diǎn)撥】本題主要考查了分段函數(shù)的求值問題,其中解答中根據(jù)分段函數(shù)的解析式,代入求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.5、C【解題分析】
取,計(jì)算知錯(cuò)誤,根據(jù)不等式性質(zhì)知正確,得到答案.【題目詳解】,故,,故正確;取,計(jì)算知錯(cuò)誤;故選:.【題目點(diǎn)撥】本題考查了不等式性質(zhì),意在考查學(xué)生對于不等式性質(zhì)的靈活運(yùn)用.6、C【解題分析】
對a進(jìn)行分類討論,結(jié)合指數(shù)函數(shù)的單調(diào)性及值域求解.【題目詳解】分析知,.討論:當(dāng)時(shí),,所以,,所以;當(dāng)時(shí),,所以,,所以.綜上,或,故選C.【題目點(diǎn)撥】本題主要考查指數(shù)函數(shù)的值域問題,指數(shù)函數(shù)的值域一般是利用單調(diào)性求解,側(cè)重考查數(shù)學(xué)運(yùn)算和數(shù)學(xué)抽象的核心素養(yǎng).7、B【解題分析】試題分析:由集合A中的函數(shù)y=lg(4-x2),得到4-x2>0,解得:-2<x<2,∴集合A={x|-2<x<2},由集合B中的函數(shù)考點(diǎn):交集及其運(yùn)算.8、C【解題分析】
根據(jù)雙曲線方程求出漸近線方程:,再將點(diǎn)代入可得,連接,根據(jù)圓的性質(zhì)可得,從而可求出,再由即可求解.【題目詳解】由雙曲線,則漸近線方程:,,連接,則,解得,所以,解得.故雙曲線方程為.故選:C【題目點(diǎn)撥】本題考查了雙曲線的幾何性質(zhì),需掌握雙曲線的漸近線求法,屬于中檔題.9、C【解題分析】
把代入,利用復(fù)數(shù)代數(shù)形式的除法運(yùn)算化簡,由實(shí)部為0且虛部不為0求解即可.【題目詳解】∵,∴,∵為純虛數(shù),∴,解得.故選C.【題目點(diǎn)撥】本題考查復(fù)數(shù)代數(shù)形式的除法運(yùn)算,考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.10、C【解題分析】
根據(jù)函數(shù)的圖象關(guān)于點(diǎn)對稱可得為奇函數(shù),結(jié)合可得是周期為4的周期函數(shù),利用及可得所求的值.【題目詳解】因?yàn)楹瘮?shù)的圖象關(guān)于點(diǎn)對稱,所以的圖象關(guān)于原點(diǎn)對稱,所以為上的奇函數(shù).由可得,故,故是周期為4的周期函數(shù).因?yàn)?,所?因?yàn)?,故,所?故選:C.【題目點(diǎn)撥】本題考查函數(shù)的奇偶性和周期性,一般地,如果上的函數(shù)滿足,那么是周期為的周期函數(shù),本題屬于中檔題.11、A【解題分析】
根據(jù)圖象關(guān)于軸對稱可知關(guān)于對稱,從而得到在上單調(diào)遞增且;再根據(jù)自變量的大小關(guān)系得到函數(shù)值的大小關(guān)系.【題目詳解】為偶函數(shù)圖象關(guān)于軸對稱圖象關(guān)于對稱時(shí),單調(diào)遞減時(shí),單調(diào)遞增又且,即本題正確選項(xiàng):【題目點(diǎn)撥】本題考查利用函數(shù)奇偶性、對稱性和單調(diào)性比較函數(shù)值的大小關(guān)系問題,關(guān)鍵是能夠通過奇偶性和對稱性得到函數(shù)的單調(diào)性,通過自變量的大小關(guān)系求得結(jié)果.12、B【解題分析】
由可得,所以,故選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
先求出集合,,然后根據(jù)交集、補(bǔ)集的定義求解即可.【題目詳解】解:,或;∴;∴.故答案為:.【題目點(diǎn)撥】本題主要考查集合的交集、補(bǔ)集運(yùn)算,屬于基礎(chǔ)題.14、18【解題分析】
由題意得函數(shù)f(x)與g(x)的圖像都關(guān)于點(diǎn)對稱,結(jié)合函數(shù)的對稱性進(jìn)行求解即可.【題目詳解】函數(shù)為奇函數(shù),函數(shù)關(guān)于點(diǎn)對稱,,函數(shù)關(guān)于點(diǎn)對稱,所以兩個(gè)函數(shù)圖象的交點(diǎn)也關(guān)于點(diǎn)(1,2)對稱,與圖像的交點(diǎn)為,,…,,兩兩關(guān)于點(diǎn)對稱,.故答案為:18【題目點(diǎn)撥】本題考查了函數(shù)對稱性的應(yīng)用,結(jié)合函數(shù)奇偶性以及分式函數(shù)的性質(zhì)求出函數(shù)的對稱性是解決本題的關(guān)鍵,屬于中檔題.15、.【解題分析】
畫出可行域,解出可行域的頂點(diǎn)坐標(biāo),代入目標(biāo)函數(shù)求出相應(yīng)的數(shù)值,比較大小得到目標(biāo)函數(shù)最值.【題目詳解】解:作出可行域,如圖所示,則當(dāng)直線過點(diǎn)時(shí)直線的截距最大,z取最大值.由同理,,取最大值.故答案為:.【題目點(diǎn)撥】本題考查線性規(guī)劃的線性目標(biāo)函數(shù)的最優(yōu)解問題.線性目標(biāo)函數(shù)的最優(yōu)解一般在平面區(qū)域的頂點(diǎn)或邊界處取得,所以對于一般的線性規(guī)劃問題,若可行域是一個(gè)封閉的圖形,我們可以直接解出可行域的頂點(diǎn),然后將坐標(biāo)代入目標(biāo)函數(shù)求出相應(yīng)的數(shù)值,從而確定目標(biāo)函數(shù)的最值;若可行域不是封閉圖形還是需要借助截距的幾何意義來求最值.16、【解題分析】
由為假,可知為真,所以對任意實(shí)數(shù)恒成立,求出的最小值,令即可.【題目詳解】因?yàn)闉榧伲瑒t其否定為真,即為真,所以對任意實(shí)數(shù)恒成立,所以.又,當(dāng)且僅當(dāng),即時(shí),等號成立,所以.故答案為:.【題目點(diǎn)撥】本題考查全稱命題與特稱命題間的關(guān)系的應(yīng)用,利用參變分離是解決本題的關(guān)鍵,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解題分析】
(1)取的中點(diǎn),結(jié)合三角形中位線和長度關(guān)系,為平行四邊形,進(jìn)而得到,根據(jù)線面平行判定定理可證得結(jié)論;(2)以,,為,,軸建立空間直角坐標(biāo)系,分別求得兩面的法向量,求得法向量夾角的余弦值;根據(jù)二面角為銳角確定最終二面角的余弦值;【題目詳解】(1)取的中點(diǎn),連結(jié),因?yàn)闉橹悬c(diǎn),,,所以,,∴為平行四邊形,所以,又因?yàn)椋?;?)由題及(1)易知,,兩兩垂直,所以以,,為,,軸建立空間直角坐標(biāo)系,則,,,,,,易知面的法向量為設(shè)面的法向量為則可得所以,如圖可知二面角為銳角,所以余弦值為【題目點(diǎn)撥】本題考查立體幾何中直線與平面平行關(guān)系的證明、空間向量法求解二面角,正確求解法向量是解題的關(guān)鍵,屬于中檔題.18、(Ⅰ)或(Ⅱ)12【解題分析】
(1)先設(shè)數(shù)列的公比為,根據(jù)題中條件求出公比,即可得出通項(xiàng)公式;(2)根據(jù)(1)的結(jié)果,由等比數(shù)列的求和公式,即可求出結(jié)果.【題目詳解】(1)設(shè)數(shù)列的公比為,,,或.(2)時(shí),,解得;時(shí),,無正整數(shù)解;綜上所述.【題目點(diǎn)撥】本題主要考查等比數(shù)列,熟記等比數(shù)列的通項(xiàng)公式與求和公式即可,屬于基礎(chǔ)題型.19、(1),;(2).【解題分析】
(1)設(shè)的公差為,的公比為,由基本量法列式求出后可得通項(xiàng)公式;(2)奇數(shù)項(xiàng)分一組用裂項(xiàng)相消法求和,偶數(shù)項(xiàng)分一組用等比數(shù)列求和公式求和.【題目詳解】(1)設(shè)的公差為,的公比為,由,.得:,解得,∴,;(2)由,得,為奇數(shù)時(shí),,為偶數(shù)時(shí),,∴.【題目點(diǎn)撥】本題考查求等差數(shù)列和等比數(shù)列的通項(xiàng)公式,考查分組求和法及裂項(xiàng)相消法、等差數(shù)列與等比數(shù)列的前項(xiàng)和公式,求通項(xiàng)公式采取的是基本量法,即求出公差、公比,由通項(xiàng)公式前項(xiàng)和公式得出相應(yīng)結(jié)論.?dāng)?shù)列求和問題,對不是等差數(shù)列或等比數(shù)列的數(shù)列求和,需掌握一些特殊方法:錯(cuò)位相減法,裂項(xiàng)相消法,分組(并項(xiàng))求和法,倒序相加法等等.20、(Ⅰ);(Ⅱ)詳見解析.【解題分析】
(Ⅰ)把點(diǎn)代入橢圓方程,結(jié)合離心率得到關(guān)于的方程,解方程即可;(Ⅱ)聯(lián)立直線與橢圓方程得到關(guān)于的一元二次方程,利用韋達(dá)定理和中垂線的定義求出線段的中垂線方程即可證明.【題目詳解】(Ⅰ)由已知橢圓過點(diǎn)得,,又,得,所以,即橢圓方程為.(Ⅱ)證明:由,得,由,得,由韋達(dá)定理可得,,設(shè)的中點(diǎn)為,得,即,,的中垂線方程為,即,故得中垂線恒過點(diǎn).【題目點(diǎn)撥】本題考查橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì)、直線與橢圓的位置關(guān)系及橢圓中的定值問題;考查運(yùn)算求解能力和知識的綜合運(yùn)用能力;正確求出橢圓方程和利用中垂線的定義正確表示出中垂線方程是求解本題的關(guān)鍵;屬于中檔題.21、(1)分布列見解析;(2)①;②,.【解題分析】
(1)經(jīng)過1輪投球,甲的得分的取值為,記一輪投球,甲投中為事件,乙投中為事件,相互獨(dú)立,計(jì)算概率后可得分布列;(2)由(1)得,由兩輪的得分可計(jì)算出,計(jì)算時(shí)可先計(jì)算出經(jīng)過2輪后甲的得分的分布列(的取值為),然后結(jié)合的分布列和的分布可計(jì)算,由,代入,得兩個(gè)方程,解得,從而得到數(shù)列的遞推式,變形后得是等比數(shù)列,由等比數(shù)列通項(xiàng)公式得,然后用累加法可求得.【題目詳解】(1)記一輪投
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)一年級數(shù)學(xué)口算練習(xí)題大全
- 江西婺源茶業(yè)職業(yè)學(xué)院《高效焊接技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 華北理工大學(xué)輕工學(xué)院《中學(xué)美術(shù)課程標(biāo)準(zhǔn)與教材分析》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖北工程職業(yè)學(xué)院《放射性三廢處理與處置》2023-2024學(xué)年第一學(xué)期期末試卷
- 周口文理職業(yè)學(xué)院《智能自動(dòng)化與控制網(wǎng)絡(luò)實(shí)訓(xùn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 重慶理工大學(xué)《機(jī)器人工程數(shù)學(xué)(2)》2023-2024學(xué)年第一學(xué)期期末試卷
- 浙江水利水電學(xué)院《區(qū)塊鏈技術(shù)及運(yùn)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州信息工程職業(yè)學(xué)院《Office高級應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 長江職業(yè)學(xué)院《動(dòng)物分子與細(xì)胞生物學(xué)導(dǎo)論》2023-2024學(xué)年第一學(xué)期期末試卷
- 云南財(cái)經(jīng)職業(yè)學(xué)院《國畫基礎(chǔ)(I)》2023-2024學(xué)年第一學(xué)期期末試卷
- 中學(xué)食堂食品安全保障機(jī)制輿情管理方案
- 企業(yè)供應(yīng)鏈管理軟件使用合同
- 碳排放管理員 (碳排放核查員) 理論知識考核要素細(xì)目表三級
- 中考化學(xué)酸堿鹽知識點(diǎn)性質(zhì)歸納
- 新教科版四上科學(xué)3.5《運(yùn)動(dòng)與摩擦力》教案(新課標(biāo))
- 四川省綿陽市2023-2024學(xué)年高一上學(xué)期期末檢測英語試題(解析版)
- 2024年中國電科集團(tuán)春季招聘公開引進(jìn)高層次人才和急需緊缺人才筆試參考題庫(共500題)答案詳解版
- 綠化養(yǎng)護(hù)服務(wù)整體養(yǎng)護(hù)方案
- 醫(yī)院護(hù)理培訓(xùn)課件:《壓力性損傷(壓瘡)的分期及預(yù)防》
- 小說訓(xùn)練-景物描寫的作用-高考語文二輪復(fù)習(xí)訓(xùn)練
- 手術(shù)室標(biāo)本管理
評論
0/150
提交評論