版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2024年安徽省合肥三中高三上數(shù)學期末監(jiān)測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在區(qū)間上隨機取一個數(shù),使得成立的概率為等差數(shù)列的公差,且,若,則的最小值為()A.8 B.9 C.10 D.112.已知集合,則集合()A. B. C. D.3.若復數(shù)滿足(是虛數(shù)單位),則的虛部為()A. B. C. D.4.如圖,在棱長為4的正方體中,E,F(xiàn),G分別為棱AB,BC,的中點,M為棱AD的中點,設P,Q為底面ABCD內(nèi)的兩個動點,滿足平面EFG,,則的最小值為()A. B. C. D.5.已知集合,集合,則()A. B. C. D.6.若雙曲線:()的一個焦點為,過點的直線與雙曲線交于、兩點,且的中點為,則的方程為()A. B. C. D.7.已知復數(shù),,則()A. B. C. D.8.已知集合,集合,那么等于()A. B. C. D.9.根據(jù)最小二乘法由一組樣本點(其中),求得的回歸方程是,則下列說法正確的是()A.至少有一個樣本點落在回歸直線上B.若所有樣本點都在回歸直線上,則變量同的相關系數(shù)為1C.對所有的解釋變量(),的值一定與有誤差D.若回歸直線的斜率,則變量x與y正相關10.一只螞蟻在邊長為的正三角形區(qū)域內(nèi)隨機爬行,則在離三個頂點距離都大于的區(qū)域內(nèi)的概率為()A. B. C. D.11.的展開式中的常數(shù)項為()A.-60 B.240 C.-80 D.18012.若函數(shù)()的圖象過點,則()A.函數(shù)的值域是 B.點是的一個對稱中心C.函數(shù)的最小正周期是 D.直線是的一條對稱軸二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的首項,函數(shù)在上有唯一零點,則數(shù)列|的前項和__________.14.從甲、乙、丙、丁、戊五人中任選兩名代表,甲被選中的概率為__________.15.已知等差數(shù)列的前n項和為,,,則=_______.16.展開式中,含項的系數(shù)為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,,求證:(1);(2).18.(12分)在中,角、、所對的邊分別為、、,且.(1)求角的大??;(2)若,的面積為,求及的值.19.(12分)在中,角的對邊分別為,且.(1)求角的大??;(2)若函數(shù)圖象的一條對稱軸方程為且,求的值.20.(12分)已知數(shù)列是等差數(shù)列,前項和為,且,.(1)求.(2)設,求數(shù)列的前項和.21.(12分)某企業(yè)質(zhì)量檢驗員為了檢測生產(chǎn)線上零件的質(zhì)量情況,從生產(chǎn)線上隨機抽取了個零件進行測量,根據(jù)所測量的零件尺寸(單位:mm),得到如下的頻率分布直方圖:(1)根據(jù)頻率分布直方圖,求這個零件尺寸的中位數(shù)(結(jié)果精確到);(2)若從這個零件中尺寸位于之外的零件中隨機抽取個,設表示尺寸在上的零件個數(shù),求的分布列及數(shù)學期望;(3)已知尺寸在上的零件為一等品,否則為二等品,將這個零件尺寸的樣本頻率視為概率.現(xiàn)對生產(chǎn)線上生產(chǎn)的零件進行成箱包裝出售,每箱個.企業(yè)在交付買家之前需要決策是否對每箱的所有零件進行檢驗,已知每個零件的檢驗費用為元.若檢驗,則將檢驗出的二等品更換為一等品;若不檢驗,如果有二等品進入買家手中,企業(yè)要向買家對每個二等品支付元的賠償費用.現(xiàn)對一箱零件隨機抽檢了個,結(jié)果有個二等品,以整箱檢驗費用與賠償費用之和的期望值作為決策依據(jù),該企業(yè)是否對該箱余下的所有零件進行檢驗?請說明理由.22.(10分)在△ABC中,角A,B,C的對邊分別是a,b,c,.(1)求cosC;(2)若b=7,D是BC邊上的點,且△ACD的面積為,求sin∠ADB.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
由題意,本題符合幾何概型,只要求出區(qū)間的長度以及使不等式成立的的范圍區(qū)間長度,利用幾何概型公式可得概率,即等差數(shù)列的公差,利用條件,求得,從而求得,解不等式求得結(jié)果.【詳解】由題意,本題符合幾何概型,區(qū)間長度為6,使得成立的的范圍為,區(qū)間長度為2,故使得成立的概率為,又,,,令,則有,故的最小值為11,故選:D.【點睛】該題考查的是有關幾何概型與等差數(shù)列的綜合題,涉及到的知識點有長度型幾何概型概率公式,等差數(shù)列的通項公式,屬于基礎題目.2、D【解析】
弄清集合B的含義,它的元素x來自于集合A,且也是集合A的元素.【詳解】因,所以,故,又,,則,故集合.故選:D.【點睛】本題考查集合的定義,涉及到解絕對值不等式,是一道基礎題.3、A【解析】
由得,然后分子分母同時乘以分母的共軛復數(shù)可得復數(shù),從而可得的虛部.【詳解】因為,所以,所以復數(shù)的虛部為.故選A.【點睛】本題考查了復數(shù)的除法運算和復數(shù)的概念,屬于基礎題.復數(shù)除法運算的方法是分子分母同時乘以分母的共軛復數(shù),轉(zhuǎn)化為乘法運算.4、C【解析】
把截面畫完整,可得在上,由知在以為圓心1為半徑的四分之一圓上,利用對稱性可得的最小值.【詳解】如圖,分別取的中點,連接,易證共面,即平面為截面,連接,由中位線定理可得,平面,平面,則平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,∴.正方體中平面,從而有,∴,∴在以為圓心1為半徑的四分之一圓(圓在正方形內(nèi)的部分)上,顯然關于直線的對稱點為,,當且僅當共線時取等號,∴所求最小值為.故選:C.【點睛】本題考查空間距離的最小值問題,解題時作出正方體的完整截面求出點軌跡是第一個難點,第二個難點是求出點軌跡,第三個難點是利用對稱性及圓的性質(zhì)求得最小值.5、D【解析】
可求出集合,,然后進行并集的運算即可.【詳解】解:,;.故選.【點睛】考查描述法、區(qū)間的定義,對數(shù)函數(shù)的單調(diào)性,以及并集的運算.6、D【解析】
求出直線的斜率和方程,代入雙曲線的方程,運用韋達定理和中點坐標公式,結(jié)合焦點的坐標,可得的方程組,求得的值,即可得到答案.【詳解】由題意,直線的斜率為,可得直線的方程為,把直線的方程代入雙曲線,可得,設,則,由的中點為,可得,解答,又由,即,解得,所以雙曲線的標準方程為.故選:D.【點睛】本題主要考查了雙曲線的標準方程的求解,其中解答中屬于運用雙曲線的焦點和聯(lián)立方程組,合理利用根與系數(shù)的關系和中點坐標公式是解答的關鍵,著重考查了推理與運算能力.7、B【解析】分析:利用的恒等式,將分子、分母同時乘以,化簡整理得詳解:,故選B點睛:復數(shù)問題是高考數(shù)學中的??紗栴},屬于得分題,主要考查的方面有:復數(shù)的分類、復數(shù)的幾何意義、復數(shù)的模、共軛復數(shù)以及復數(shù)的乘除運算,在運算時注意符號的正、負問題.8、A【解析】
求出集合,然后進行并集的運算即可.【詳解】∵,,∴.故選:A.【點睛】本小題主要考查一元二次不等式的解法,考查集合并集的概念和運算,屬于基礎題.9、D【解析】
對每一個選項逐一分析判斷得解.【詳解】回歸直線必過樣本數(shù)據(jù)中心點,但樣本點可能全部不在回歸直線上﹐故A錯誤;所有樣本點都在回歸直線上,則變量間的相關系數(shù)為,故B錯誤;若所有的樣本點都在回歸直線上,則的值與相等,故C錯誤;相關系數(shù)r與符號相同,若回歸直線的斜率,則,樣本點分布應從左到右是上升的,則變量x與y正相關,故D正確.故選D.【點睛】本題主要考查線性回歸方程的性質(zhì),意在考查學生對該知識的理解掌握水平和分析推理能力.10、A【解析】
求出滿足條件的正的面積,再求出滿足條件的正內(nèi)的點到頂點、、的距離均不小于的圖形的面積,然后代入幾何概型的概率公式即可得到答案.【詳解】滿足條件的正如下圖所示:其中正的面積為,滿足到正的頂點、、的距離均不小于的圖形平面區(qū)域如圖中陰影部分所示,陰影部分區(qū)域的面積為.則使取到的點到三個頂點、、的距離都大于的概率是.故選:A.【點睛】本題考查幾何概型概率公式、三角形的面積公式、扇形的面積公式的應用,考查計算能力,屬于中等題.11、D【解析】
求的展開式中的常數(shù)項,可轉(zhuǎn)化為求展開式中的常數(shù)項和項,再求和即可得出答案.【詳解】由題意,中常數(shù)項為,中項為,所以的展開式中的常數(shù)項為:.故選:D【點睛】本題主要考查二項式定理的應用和二項式展開式的通項公式,考查學生計算能力,屬于基礎題.12、A【解析】
根據(jù)函數(shù)的圖像過點,求出,可得,再利用余弦函數(shù)的圖像與性質(zhì),得出結(jié)論.【詳解】由函數(shù)()的圖象過點,可得,即,,,故,對于A,由,則,故A正確;對于B,當時,,故B錯誤;對于C,,故C錯誤;對于D,當時,,故D錯誤;故選:A【點睛】本題主要考查了二倍角的余弦公式、三角函數(shù)的圖像與性質(zhì),需熟記性質(zhì)與公式,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由函數(shù)為偶函數(shù),可得唯一零點為,代入可得數(shù)列的遞推關系式,再進行配湊轉(zhuǎn)換為等比數(shù)列,最后運用分部求和可得答案.【詳解】因為為偶函數(shù),在上有唯一零點,所以,∴,∴,∴為首項為2,公比為2的等比數(shù)列.所以,.故答案為:【點睛】本題主要考查了函數(shù)的奇偶性和函數(shù)的零點,同時也考查了由遞推關系式求數(shù)列的通項,考查了數(shù)列的分部求和,屬于中檔題.14、【解析】
甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,根據(jù)公式即可求得概率.【詳解】甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,.故答案為:.【點睛】本題考查古典概型的概率的計算,考查學生分析問題的能力,難度容易.15、【解析】
利用求出公差,結(jié)合等差數(shù)列的通項公式可求.【詳解】設公差為,因為,所以,即.所以.故答案為:【點睛】本題主要考查等差數(shù)列通項公式的求解,利用等差數(shù)列的基本量是求解這類問題的通性通法,側(cè)重考查數(shù)學運算的核心素養(yǎng).16、2【解析】
變換得到,展開式的通項為,計算得到答案.【詳解】,的展開式的通項為:.含項的系數(shù)為:.故答案為:.【點睛】本題考查了二項式定理的應用,意在考查學生的計算能力和應用能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析.【解析】
(1)結(jié)合基本不等式可證明;(2)利用基本不等式得,即,同理得其他兩個式子,三式相加可證結(jié)論.【詳解】(1)∵,∴,當且僅當a=b=c等號成立,∴;(2)由基本不等式,∴,同理,,∴,當且僅當a=b=c等號成立∴.【點睛】本題考查不等式的證明,考查用基本不等式證明不等式成立.解題關鍵是發(fā)現(xiàn)基本不等式的形式,方法是綜合法.18、(1)(2);【解析】
(1)由代入中計算即可;(2)由余弦定理可得,所以,由,變形即可得到答案.【詳解】(1)因為,可得:,∴,或(舍),∵,∴.(2)由余弦定理,得所以,故,又,所以,所以.【點睛】本題考查二倍角公式以及正余弦定理解三角形,考查學生的運算求解能力,是一道容易題.19、(1)(2)【解析】
(1)由已知利用三角函數(shù)恒等變換的應用,正弦定理可求,即可求的值.(2)利用三角函數(shù)恒等變換的應用,可得,根據(jù)題意,得到,解得,得到函數(shù)的解析式,進而求得的值,利用三角函數(shù)恒等變換的應用可求的值.【詳解】(1)由題意,根據(jù)正弦定理,可得,又由,所以,可得,即,又因為,則,可得,∵,∴.(2)由(1)可得,所以函數(shù)的圖象的一條對稱軸方程為,∴,得,即,∴,又,∴,∴.【點睛】本題主要考查了三角函數(shù)恒等變換的應用,正弦定理在解三角形中的綜合應用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.20、(1)(2)【解析】
(1)由數(shù)列是等差數(shù)列,所以,解得,又由,解得,即可求得數(shù)列的通項公式;(2)由(1)得,利用乘公比錯位相減,即可求解數(shù)列的前n項和.【詳解】(1)由題意,數(shù)列是等差數(shù)列,所以,又,,由,得,所以,解得,所以數(shù)列的通項公式為.(2)由(1)得,,,兩式相減得,,即.【點睛】本題主要考查等差的通項公式、以及“錯位相減法”求和的應用,此類題目是數(shù)列問題中的常見題型,解答中確定通項公式是基礎,準確計算求和是關鍵,易錯點是在“錯位”之后求和時,弄錯等比數(shù)列的項數(shù),能較好的考查考生的數(shù)形結(jié)合思想、邏輯思維能力及基本計算能力等.21、(1);(2)分布列見詳解,期望為;(3)余下所有零件不用檢驗,理由見詳解.【解析】
(1)計算的頻率,并且與進行比較,判斷中位數(shù)落在的區(qū)間,然后根據(jù)頻率的計算方法,可得結(jié)果.(2)計算位于之外的零件中隨機抽取個的總數(shù),寫出所有可能取值,并計算相對應的概率,列出分布列,計算期望,可得結(jié)果.(3)計算整箱的費用,根據(jù)余下零件個數(shù)服從二項分布,可得余下零件個數(shù)的期望值,然后計算整箱檢驗費用與賠償費用之和的期望值,進行比較,可得結(jié)果.【詳解】(1)尺寸在的頻率:尺寸在的頻率:且所以可知尺寸的中位數(shù)落在假設尺寸中位數(shù)為所以所以這個零件尺寸的中位數(shù)(2)尺寸在的個數(shù)為尺寸在的個數(shù)為的所有可能取值為1,2,3,4則,,所以的分布列為(3)二等品的概率為如果對余下的零件進行檢驗則整箱的檢驗費用為(元)余下二等品的個數(shù)期望值為如果不對余下的零件進行檢驗,整箱檢驗費用與賠償費用之和的期望
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年民和縣中醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 2024年05月浙江中信銀行杭州蕭山分行社會招考(515)筆試歷年參考題庫附帶答案詳解
- 2025年度湖州軟件開發(fā)工程師勞動合同
- 2025年度混凝土路面施工合同終止條件3篇
- 2025年度模具行業(yè)人才培養(yǎng)與交流合作協(xié)議2篇
- 2021西安市高考英語【四月】閱讀理解、完形填空選練(12)答案
- 教研組工作計劃模板集錦8篇
- 2024年北京戶口遷移與職業(yè)技能提升協(xié)議3篇
- 2025年度洗浴中心承包經(jīng)營權(quán)轉(zhuǎn)讓協(xié)議書范本3篇
- 數(shù)字金融嵌入下金融素養(yǎng)與家庭金融風險的關系探討
- 產(chǎn)品經(jīng)理必備BP模板(中文版)
- 維西縣城市生活垃圾熱解處理工程環(huán)評報告
- GB/T 9128.2-2023鋼制管法蘭用金屬環(huán)墊第2部分:Class系列
- 網(wǎng)絡經(jīng)濟學PPT完整全套教學課件
- 2023年主治醫(yī)師(中級)-臨床醫(yī)學檢驗學(中級)代碼:352考試參考題庫附帶答案
- 機械原理課程設計鎖梁自動成型機床切削機構(gòu)
- 順產(chǎn)臨床路徑
- 人教版培智一年級上生活適應教案
- 推動架機械加工工序卡片
- RoHS檢測報告完整版
- 中國近現(xiàn)代史綱要(上海建橋?qū)W院)智慧樹知到答案章節(jié)測試2023年
評論
0/150
提交評論