山東省臨沂市蒼山第一中學(xué)2021-2022學(xué)年高一數(shù)學(xué)理下學(xué)期期末試卷含解析_第1頁
山東省臨沂市蒼山第一中學(xué)2021-2022學(xué)年高一數(shù)學(xué)理下學(xué)期期末試卷含解析_第2頁
山東省臨沂市蒼山第一中學(xué)2021-2022學(xué)年高一數(shù)學(xué)理下學(xué)期期末試卷含解析_第3頁
山東省臨沂市蒼山第一中學(xué)2021-2022學(xué)年高一數(shù)學(xué)理下學(xué)期期末試卷含解析_第4頁
山東省臨沂市蒼山第一中學(xué)2021-2022學(xué)年高一數(shù)學(xué)理下學(xué)期期末試卷含解析_第5頁
已閱讀5頁,還剩6頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

山東省臨沂市蒼山第一中學(xué)2021-2022學(xué)年高一數(shù)學(xué)理下學(xué)期期末試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.設(shè),則下列不等式中正確的是()A. B.C. D.參考答案:B【詳解】取,則,,只有B符合.故選B.考點:基本不等式.

2.若,則

)A、

B、

C、

D、參考答案:B略3.已知數(shù)列{an}的前n項和為Sn,若,則()A. B. C. D.參考答案:A【分析】再遞推一步,兩個等式相減,得到一個等式,進行合理變形,可以得到一個等比數(shù)列,求出通項公式,最后求出數(shù)列的通項公式,最后求出,選出答案即可.【詳解】因為,所以當(dāng)時,,兩式相減化簡得:,而,所以數(shù)列是以為首項,為公比的等比數(shù)列,因此有,所以,故本題選A.【點睛】本題考查了已知數(shù)列遞推公式求數(shù)列通項公式的問題,考查了等比數(shù)列的判斷以及通項公式,正確的遞推和等式的合理變形是解題的關(guān)鍵.4.要了解全市高一學(xué)生身高在某一范圍的學(xué)生所占比例的大小,需知道相應(yīng)樣本的(

)A

平均數(shù)

B

方差

C

眾數(shù)

D

頻率分布參考答案:D5.已知平面向量,,且//,則(

)A. B. C. D.5參考答案:B【分析】由向量平行的坐標(biāo)運算求得參數(shù)的值,計算出兩向量的和后再由模的坐標(biāo)表示求得?!驹斀狻俊?/,∴,,∴,∴.故選:B.【點睛】本題考查平面向量平行的坐標(biāo)運算,考查向量模的坐標(biāo)運算,解題基礎(chǔ)是掌握向量運算的坐標(biāo)表示.6.下列命題中全稱量詞命題的個數(shù)為()①平行四邊形的對角線互相平分;②梯形有兩邊平行;③存在一個菱形,它的四條邊不相等.A.0 B.1C.2

D.3參考答案:C解析:①②是全稱量詞命題,③是存在量詞命題.故選C.7.某四棱錐的三視圖如圖所示,該四棱錐的表面積是()A.16 B.16+16 C.32 D.16+32參考答案:B【分析】由已知中的三視力可得該幾何體是一個四棱錐,求出各個面的面積,相加可得答案.【解答】解:由已知中的三視力可得該幾何體是一個四棱錐,棱錐的底面邊長為4,故底面面積為16,棱錐的高為2,故側(cè)面的高為:2,則每個側(cè)面的面積為:=4,故棱錐的表面積為:16+16,故選:B8.函數(shù)在上為減函數(shù),則實數(shù)a的取值范圍是(

)A.

B.

C.

D.參考答案:A略9.設(shè)全集,集合,,則右圖中的陰影部分表示的集合為(

)A.

B.

C.

D.參考答案:B10.下列圖像中,是函數(shù)圖像的是(

A.(1)(2)

B.(2)(3)

C.(2)(4)

D.(1)(3)參考答案:D二、填空題:本大題共7小題,每小題4分,共28分11..一個扇形的周長是6厘米,該扇形的中心角是1弧度,該扇形的面積是________________.參考答案:2

略12.函數(shù)f(x)=log2(x2-1)的單調(diào)遞減區(qū)間為________.參考答案:(-∞,-1)13.正在向正北開的輪船看見正東方向有兩座燈塔,過15分鐘后,再看這兩座燈塔,分別在正東南和南偏東的方向,兩座燈塔相距10海里,則輪船的速度是_______________海里/小時。參考答案:14.已知冪函數(shù)的圖象過點,則__________.參考答案:15.若,則

參考答案:016.函數(shù)的定義域為

.參考答案:(-∞,-)∪(-,2)17.在△ABC中,,且,則AB=____________參考答案:【分析】根據(jù)正弦定理求出,再利用余弦定理求出.【詳解】由正弦定理可知:,又由余弦定理可知:本題正確結(jié)果:【點睛】本題考查利用正弦定理、余弦定理解三角形問題,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.已知,求和的值.參考答案:,【分析】先根據(jù)已知求出,再求出和的值.【詳解】由題得,所以,所以,.【點睛】本題主要考查反三角函數(shù)和三角函數(shù)求值,意在考查學(xué)生對這些知識理解掌握水平,屬于基礎(chǔ)題.

19.已知△OAB是邊長為2的正三角形,記△OAB位于直線x=t(t>0)左側(cè)的圖形的面積為f(t),求函數(shù)f(t)的表達(dá)式.參考答案:解:由圖,當(dāng)0<t≤1時,此時滿足條件圖形為以t為底,以t為高的三角形∴當(dāng)t>2時,此時滿足條件圖形為△OAB∴當(dāng)1<t≤2時,此時滿足條件圖形為△OAB減一個以(2﹣t)為底,以(2﹣t)為高的三角形所得的四邊形∴綜上可得考點:函數(shù)解析式的求解及常用方法.專題:應(yīng)用題.分析:由于△OAB位于直線x=t(t>0)左側(cè)的圖形的形狀在t取不同值時,形狀不同,故可以分當(dāng)0<t≤1時(此時滿足條件的圖形為三角形)和當(dāng)1<t≤2時(此時滿足條件的圖形為四邊形)及t>2時(此時滿足條件的圖形為三角形OAB)三種情況進行分類討論,最后綜合討論結(jié)果,即可得到函數(shù)f(t)的表達(dá)式.解答:解:由圖,當(dāng)0<t≤1時,此時滿足條件圖形為以t為底,以t為高的三角形∴當(dāng)t>2時,此時滿足條件圖形為△OAB∴當(dāng)1<t≤2時,此時滿足條件圖形為△OAB減一個以(2﹣t)為底,以(2﹣t)為高的三角形所得的四邊形∴綜上可得點評:本題考查的知識點是分段函數(shù)的求法,其中根據(jù)已知中的圖形,合理的設(shè)置分類標(biāo)準(zhǔn)是解答本題的關(guān)鍵20.已知f(x)=2x,g(x)是一次函數(shù),并且點(2,2)在函數(shù)f[g(x)]的圖象上,點(2,5)在函數(shù)g[f(x)]的圖象上,求g(x)的解析式.參考答案:【考點】函數(shù)解析式的求解及常用方法.【專題】函數(shù)的性質(zhì)及應(yīng)用.【分析】g(x)是一次函數(shù),所以設(shè)為g(x)=ax+b,f[g(x)]=2ax+b,g[f(x)]=a?2x+b,所以將坐標(biāo)(2,2),(2,5)分別帶入函數(shù)f[g(x)],g[f(x)]即可得到關(guān)于a,b的兩個方程,解方程組即得a,b,從而求出g(x)的解析式.【解答】解:設(shè)g(x)=ax+b,a≠0;則:f[g(x)]=2ax+b,g[f(x)]=a?2x+b;∴根據(jù)已知條件有:;∴解得a=2,b=﹣3;∴g(x)=2x﹣3.【點評】考查一次函數(shù)的一般形式,求復(fù)合函數(shù)解析式,點在函數(shù)的圖象上時,以及點的坐標(biāo)和函數(shù)解析式的關(guān)系.21.某校高一學(xué)生1000人,每周一次同時在兩個可容納600人的會議室,開設(shè)“音樂欣賞”與“美術(shù)鑒賞”的校本課程.要求每個學(xué)生都參加,要求第一次聽“音樂欣賞”課的人數(shù)為,其余的人聽“美術(shù)鑒賞”課;從第二次起,學(xué)生可從兩個課中自由選擇.據(jù)往屆經(jīng)驗,凡是這一次選擇“音樂欣賞”的學(xué)生,下一次會有20﹪改選“美術(shù)鑒賞”,而選“美術(shù)鑒賞”的學(xué)生,下次會有30﹪改選“音樂欣賞”,用分別表示在第次選“音樂欣賞”課的人數(shù)和選“美術(shù)鑒賞”課的人數(shù).(1)若,分別求出第二次,第三次選“音樂欣賞”課的人數(shù);(2)①證明數(shù)列是等比數(shù)列,并用表示;

②若要求前十次參加“音樂欣賞”課的學(xué)生的總?cè)舜尾怀^5800,求的取值范圍.

參考答案:解:(Ⅰ)由已知,又,,……1分

∴,…………………2分∴,

∴.……4分(Ⅱ)(?。┯深}意得,

∴,……5分

∴,

………………6分

,∴,∴數(shù)列是等比數(shù)列,公比為首項為

…………7分

∴,得

……………8分(ⅱ)前十次聽“音樂欣賞”課的學(xué)生總?cè)舜渭礊閿?shù)列的前10項和,

,…10分由已知,,得,∴

,∴,………………12分,∴的取值范圍是,且.……14分

略22.已知集合.(1)若,求實數(shù)m的取值范圍;(2)若,且,求實數(shù)m的取值范圍.參考答案:解:A={x|-2≤x≤7},B={y|-3≤y≤5}

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論