云南省永平縣第二中學2022-2023學年高一數(shù)學第二學期期末綜合測試試題含解析_第1頁
云南省永平縣第二中學2022-2023學年高一數(shù)學第二學期期末綜合測試試題含解析_第2頁
云南省永平縣第二中學2022-2023學年高一數(shù)學第二學期期末綜合測試試題含解析_第3頁
云南省永平縣第二中學2022-2023學年高一數(shù)學第二學期期末綜合測試試題含解析_第4頁
云南省永平縣第二中學2022-2023學年高一數(shù)學第二學期期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高一下數(shù)學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.等比數(shù)列中,,則等于是()A. B.4 C. D.2.秦九韶是我國南宋時期的數(shù)學家,在他所著的《數(shù)書九章》中提出的多項式求值的“秦九韶算法”,至今仍是比較先進的算法.如圖所示的程序框圖給出了利用秦九韶算法,求某多項式值的一個實例,若輸入的值分別為4和2,則輸出的值為()A.32 B.64 C.65 D.1303.平面直角坐標系中,O為坐標原點,點A,B的坐標分別為(1,1),(-3,3).若動點P滿足,其中λ,μ∈R,且λ+μ=1,則點P的軌跡方程為()A. B. C. D.4.設直線l與平面平行,直線m在平面上,那么()A.直線l不平行于直線m B.直線l與直線m異面C.直線l與直線m沒有公共點 D.直線l與直線m不垂直5.棉花的纖維長度是棉花質量的重要指標.在一批棉花中抽測了根棉花的纖維長度(單位:),將樣本數(shù)據(jù)作成如下的頻率分布直方圖:下列關于這批棉花質量狀況的分析,不合理的是()A.這批棉花的纖維長度不是特別均勻B.有一部分棉花的纖維長度比較短C.有超過一半的棉花纖維長度能達到以上D.這批棉花有可能混進了一些次品6.若將函數(shù)的圖象向右平移個單位,所得圖象關于軸對稱,則的最小值是()A. B. C. D.7.已知函數(shù)的部分圖象如圖所示,則的值為()A. B. C. D.8.我國古代數(shù)學名著九章算術記載:“芻甍者,下有袤有廣,而上有袤無丈芻,草也;甍,屋蓋也”翻譯為:“底面有長有寬為矩形,頂部只有長沒有寬為一條棱芻甍字面意思為茅草屋頂”如圖,為一芻甍的三視圖,其中正視圖為等腰梯形,側視圖為等腰三角形則它的體積為A. B.160 C. D.649.如圖,矩形ABCD中,AB=2,AD=1,P是對角線AC上一點,,過點P的直線分別交DA的延長線,AB,DC于點M,E,N.若(m>0,n>0),則2m+3n的最小值是()A. B.C. D.10.如果a<b<0,則下列不等式成立的是()A. B.a(chǎn)2<b2 C.a(chǎn)3<b3 D.a(chǎn)c2<bc2二、填空題:本大題共6小題,每小題5分,共30分。11.一個封閉的正三棱柱容器,該容器內(nèi)裝水恰好為其容積的一半(如圖1,底面處于水平狀態(tài)),將容器放倒(如圖2,一個側面處于水平狀態(tài)),這時水面與各棱交點分別為E,F(xiàn)、,,則的值是__________.12.設,則的值是____.13.長方體的一個頂點上的三條棱長分別是3,4,5,且它的8個頂點都在同一個球面上,則這個球的表面積是14.已知函數(shù),則______.15.數(shù)列滿足,則數(shù)列的前6項和為_______.16.已知,且,則_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖是某設計師設計的型飾品的平面圖,其中支架,,兩兩成,,,且.現(xiàn)設計師在支架上裝點普通珠寶,普通珠寶的價值為,且與長成正比,比例系數(shù)為(為正常數(shù));在區(qū)域(陰影區(qū)域)內(nèi)鑲嵌名貴珠寶,名貴珠寶的價值為,且與的面積成正比,比例系數(shù)為.設,.(1)求關于的函數(shù)解析式,并寫出的取值范圍;(2)求的最大值及相應的的值.18.某校全體教師年齡的頻率分布表如表1所示,其中男教師年齡的頻率分布直方圖如圖2所示.已知該校年齡在歲以下的教師中,男女教師的人數(shù)相等.表1:(1)求圖2中的值;(2)若按性別分層抽樣,隨機抽取16人參加技能比賽活動,求男女教師抽取的人數(shù);(3)若從年齡在的教師中隨機抽取2人,參加重陽節(jié)活動,求至少有1名女教師的概率.19.將函數(shù)的圖像向右平移1個單位,得到函數(shù)的圖像.(1)求的單調(diào)遞增區(qū)間;(3)設為坐標原點,直線與函數(shù)的圖像自左至右相交于點,,,求的值.20.如圖,已知平面是正三角形,.(1)求證:平面平面;(2)求二面角的正切值.21.已知圓圓心坐標為點為坐標原點,軸、軸被圓截得的弦分別為、.(1)證明:的面積為定值;(2)設直線與圓交于兩點,若,求圓的方程.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

利用等比數(shù)列通項公式直接求解即可.【詳解】因為是等比數(shù)列,所以.故選:B【點睛】本題考查了等比數(shù)列通項公式的應用,屬于基礎題.2、C【解析】程序運行循環(huán)時變量值為:;;;,退出循環(huán),輸出,故選C.3、C【解析】

設點坐標,代入,得到即,再根據(jù),即可求解.【詳解】設點坐標,因為點的坐標分別為,將各點坐標代入,可得,即,解得,代入,化簡得,故選C.【點睛】本題主要考查了平面向量的坐標運算和點的軌跡的求解,其中解答中熟記向量的坐標運算,以及平面向量的基本定理是解答的關鍵,著重考查了推理運算能力,屬于基礎題.4、C【解析】

由題設條件,得到直線與直線異面或平行,進而得到答案.【詳解】由題意,因為直線與平面平行,直線在平面上,所以直線與直線異面或平行,即直線與直線沒有公共點,故選C.【點睛】本題主要考查了空間中直線與直線只見那的位置關系的判定及應用,以及直線與平面平行的應用,著重考查了推理與論證能力,屬于基礎題.5、C【解析】

根據(jù)頻率分布直方圖計算纖維長度超過的頻率,可知不超過一半,從而得到結果.【詳解】由頻率分布直方圖可知,纖維長度超過的頻率為:棉花纖維長度達到以上的不超過一半不合理本題正確選項:【點睛】本題考查利用頻率分布直方圖估計總體數(shù)據(jù)的分布特征,關鍵是能夠熟練掌握利用頻率分布直方圖計算頻率的方法.6、B【解析】

把函數(shù)的解析式利用輔助角公式化成余弦型函數(shù)解析式形式,然后求出向右平移個單位后函數(shù)的解析式,根據(jù)題意,利用余弦型函數(shù)的性質求解即可.【詳解】,該函數(shù)求出向右平移個單位后得到新函數(shù)的解析式為:,由題意可知:函數(shù)的圖象關于軸對稱,所以有當時,有最小值,最小值為.故選:B【點睛】本題考查了余弦型函數(shù)的圖象平移,考查了余弦型函數(shù)的性質,考查了數(shù)學運算能力.7、C【解析】

結合函數(shù)圖像,由函數(shù)的最值求出A,由周期求出,再由求出的值.【詳解】由圖像可知:,故,又,所以又,故:.故選:C【點睛】本題考查了利用圖像求三角函數(shù)的解析式,考查了學生綜合分析,數(shù)形結合的能力,屬于中檔題.8、A【解析】

分析:由三視圖可知該芻甍是一個組合體,它由成一個直三棱柱和兩個全等的四棱錐組成,根據(jù)三視圖中的數(shù)據(jù)可得其體積.詳解:由三視圖可知該芻甍是一個組合體,它由成一個直三棱柱和兩個全等的四棱錐組成,根據(jù)三視圖中的數(shù)據(jù),求出棱錐與棱柱的體積相加即可,,故選A.點睛:本題利用空間幾何體的三視圖重點考查學生的空間想象能力和抽象思維能力,屬于難題.三視圖問題是考查學生空間想象能力最常見題型,也是高考熱點.觀察三視圖并將其“翻譯”成直觀圖是解題的關鍵,不但要注意三視圖的三要素“高平齊,長對正,寬相等”,還要特別注意實線與虛線以及相同圖形的不同位置對幾何體直觀圖的影響,對簡單組合體三視圖問題,先看俯視圖確定底面的形狀,根據(jù)正視圖和側視圖,確定組合體的形狀.9、C【解析】設,則又當且僅當時取等號,故選點睛:在利用基本不等式求最值的時候,要特別注意“拆,拼,湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù)),“定”(不等式的另一邊必須為定值),“等”(等號取得的條件)的條件才能應用,否則會出現(xiàn)錯誤.10、C【解析】

根據(jù)a、b的范圍,取特殊值帶入判斷即可.【詳解】∵a<b<0,不妨令a=﹣2,b=﹣1,則,a2>b2所以A、B不成立,當c=0時,ac2=bc2所以D不成立,故選:C.【點睛】本題考查了不等式的性質,考查特殊值法進行排除的應用,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

設,則,由題意得:,由此能求出的值.【詳解】設,則,由題意得:,解得,.故答案為:.【點睛】本題考查兩線段比值的求法、三棱柱的體積等基礎知識,考查運算求解能力,是中檔題.12、【解析】

根據(jù)二倍角公式得出,再根據(jù)誘導公式即可得解.【詳解】解:由題意知:故,即.故答案為.【點睛】本題考查了二倍角公式和誘導公式的應用,屬于基礎題.13、【解析】

利用長方體的體對角線是長方體外接球的直徑,求出球的半徑,從而可得結果.【詳解】本題主要考查空間幾何體的表面積與體積.長方體的體對角線是長方體外接球的直徑,設球的半徑為,則,可得,球的表面積故答案為.【點睛】本題主要考查長方體與球的幾何性質,以及球的表面積公式,屬于基礎題.14、【解析】

根據(jù)題意令f(x)=,求出x的值,即可得出f﹣1()的值.【詳解】令f(x)=+arcsin(2x)=,得arcsin(2x)=﹣,∴2x=﹣,解得x=﹣,∴f﹣1()=﹣.故答案為:﹣.【點睛】本題考查了反函數(shù)以及反正弦函數(shù)的應用問題,屬于基礎題.15、84【解析】

根據(jù)分組求和法以及等差數(shù)列與等比數(shù)列前n項和公式求解.【詳解】因為,所以.【點睛】本題考查分組求和法以及等差數(shù)列與等比數(shù)列前n項和公式,考查基本分析求解能力,屬基礎題.16、【解析】

首先根據(jù)已知條件求得的值,平方后利用同角三角函數(shù)的基本關系式求得的值.【詳解】由得,兩邊平方并化簡得,由于,所以.而,由于,所以【點睛】本小題主要考查同角三角函數(shù)的基本關系式,考查兩角和的正弦公式,考查化歸與轉化的數(shù)學思想方法,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)();(2),的最大值是.【解析】試題分析:(1)運用題設和實際建立函數(shù)關系并確定定義域;(2)運用基本不等式求函數(shù)的最值和取得最值的條件.試題解析:(1)因為,,,由余弦定理,,解得,由,得.又,得,解得,所以的取值范圍是.(2),,則,設,則.當且僅當即取等號,此時取等號,所以當時,的最大值是.考點:閱讀理解能力和數(shù)學建模能力、基本不等式及在解決實際問題中的靈活運用.【易錯點晴】應用題是江蘇高考每年必考的重要題型之一,也是歷屆高考失分較多的題型.解答這類問題的關鍵是提高考生的閱讀理解能力和數(shù)學建模能力,以及抽象概括能力.解答好這類問題要過:“審題、理解題意、建立數(shù)學模型、求解數(shù)學模型、作答”這五個重要環(huán)節(jié),其中審題關要求反復閱讀問題中提供的一些信息,并將其與學過的數(shù)學模型進行聯(lián)系,為建構數(shù)學模型打下基礎,最后的作答也是必不可少的重要環(huán)節(jié)之一,應用題的解答最后一定要依據(jù)題設中提供的問題做出合理的回答,這也是失分較多一個環(huán)節(jié).18、(1);(2)見解析;(3)【解析】

由男教師年齡的頻率分布直方圖總面積為1求得答案;由男教師年齡在的頻率可計算出男教師人數(shù),從而女教師人數(shù)也可求得,于是通過分層抽樣的比例關系即可得到答案;年齡在的教師中,男教師為(人),則女教師為1人,從而可計算出基本事件的概率.【詳解】(1)由男教師年齡的頻率分布直方圖得解得(2)該校年齡在歲以下的男女教師人數(shù)相等,且共14人,年齡在歲以下的男教師共7人由(1)知,男教師年齡在的頻率為男教師共有(人),女教師共有(人)按性別分層抽樣,隨機抽取16人參加技能比賽活動,則男教師抽取的人數(shù)為(人),女教師抽取的人數(shù)為人(3)年齡在的教師中,男教師為(人),則女教師為1人從年齡在的教師中隨機抽取2人,共有10種可能情形其中至少有1名女教師的有4種情形故所求概率為【點睛】本題主要考查頻率分布直方圖,分層抽樣,古典概率的計算,意在考查學生的計算能力和分析能力,難度不大.19、(1)();(2)【解析】

(1)通過“左加右減”可得到函數(shù)的解析式,從而求得的單調(diào)遞增區(qū)間;(2)先求得直線與軸的交點為,則,又,關于點對稱,所以,從而.【詳解】(1)令,,的單調(diào)遞增區(qū)間是()(2)直線與軸的交點為,即為函數(shù)的對稱中心,且,關于點對稱,【點睛】本題主要考查三角函數(shù)平移,增減區(qū)間的求解,對稱中心的性質及向量的基本運算,意在考查學生的分析能力和計算能力.20、(1)證明見解析;(2).【解析】

(1)取的中點的中點,證明,由根據(jù)線面垂直判定定理可得,可得平面,結合面面垂直的判定定理,可得平面平面;

(2)過作,連接BM,可以得到為二面角的平面角,解三角形即可求出二面角的正切值.【詳解】解:(1)取BE的中點F.

AE的中點G,連接GD,CF∴,GF∥AB又∵,CD∥AB∴CD∥GF,CD=GF,∴CFGD是平行四邊形,∴CF∥GD,又∵CF⊥BF,CF⊥AB∴CF⊥平面ABE∵CF∥DG∴DG⊥平面ABE,∵DG?平面ABE∴平面ABE⊥平面ADE;(2)∵AB=BE,∴AE⊥BG,∴BG⊥平面ADE,過G作GM⊥DE,連接BM,則BM⊥DE,則∠BMG為二面角A?DE?B的平面角,設AB=BC=2CD=2,則,在Rt△DCE中,CD=1,CE=2,∴,又,由DE?GM=DG?EG得,所以,故面角的正切值為:.【點睛】本題考查了面面垂直的判定定理及二面角的平面角的作法,重點考查了空間想象能力,屬中檔題.21、(1)證明見解析;(2).【解析】

(1)利用幾何條件可知,為直角三角形,且圓過原點,所以得知三角形兩

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論