版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.如圖,在四邊形ABCD中,,,,,.則()A. B. C.4 D.32.已知等比數(shù)列中,,,則()A.10 B.7 C.4 D.123.菱形ABCD,E是AB邊靠近A的一個(gè)三等分點(diǎn),DE=4,則菱形ABCD面積最大值為()A.36 B.18 C.12 D.94.已知函數(shù)和的定義域都是,則它們的圖像圍成的區(qū)域面積是()A. B. C. D.5.連續(xù)兩次拋擲一枚質(zhì)地均勻的硬幣,出現(xiàn)正面向上與反面向上各一次的概率是(
)A. B. C. D.6.設(shè)變量滿足約束條件,則目標(biāo)函數(shù)的最大值為()A.3 B.4 C.18 D.407.已知:,,若函數(shù)和有完全相同的對(duì)稱軸,則不等式的解集是A. B.C. D.8.已知一直線經(jīng)過(guò)兩點(diǎn),,且傾斜角為,則的值為()A.-6 B.-4 C.2 D.69.若,,與的夾角為,則的值是()A. B. C. D.10.若集合,則集合()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè),,則______.12.函數(shù)在的遞減區(qū)間是__________13.已知公式,,借助這個(gè)公式,我們可以求函數(shù)的值域,則該函數(shù)的值域是______.14.函數(shù)的最小正周期為________.15.?dāng)?shù)列的前項(xiàng)和為,已知,且對(duì)任意正整數(shù),都有,若恒成立,則實(shí)數(shù)的最小值為________.16.設(shè)為數(shù)列的前項(xiàng)和,則__三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.在中,角A、B、C的對(duì)邊分別為a、b、c,面積為S,已知(Ⅰ)求證:成等差數(shù)列;(Ⅱ)若求.18.制訂投資計(jì)劃時(shí),不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個(gè)項(xiàng)目.根據(jù)預(yù)測(cè),甲、乙項(xiàng)目可能的最大盈利分別為和,可能的最大虧損率分別為和.投資人計(jì)劃投資金額不超過(guò)億元,要求確??赡艿馁Y金虧損不超過(guò)億元,問(wèn)投資人對(duì)甲、乙兩個(gè)項(xiàng)目各投資多少億元,才能使可能的盈利最大?19.在中,角,,所對(duì)的邊分別為,,,已知,,角為銳角,的面積為.(1)求角的大?。唬?)求的值.20.如圖,墻上有一壁畫,最高點(diǎn)離地面4米,最低點(diǎn)離地面2米,觀察者從距離墻米,離地面高米的處觀賞該壁畫,設(shè)觀賞視角(1)若問(wèn):觀察者離墻多遠(yuǎn)時(shí),視角最大?(2)若當(dāng)變化時(shí),求的取值范圍.21.設(shè)函數(shù)(1)若對(duì)于一切實(shí)數(shù)恒成立,求的取值范圍;(2)若對(duì)于恒成立,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】
在中,由正弦定理得到的長(zhǎng),在中,先得到的值,再利用余弦定理,求出的長(zhǎng).【詳解】在中,由正弦定理,得,因?yàn)?,,所以,在中,由余弦定理得所?故選:D.【點(diǎn)睛】本題考查正弦定理、余弦定理解三角形,屬于簡(jiǎn)單題.2、C【解析】
由等比數(shù)列性質(zhì)可知,進(jìn)而根據(jù)對(duì)數(shù)的運(yùn)算法則計(jì)算即可【詳解】由題,因?yàn)榈缺葦?shù)列,所以,則,故選:C【點(diǎn)睛】本題考查等比數(shù)列的性質(zhì)的應(yīng)用,考查對(duì)數(shù)的運(yùn)算3、B【解析】
設(shè)出菱形的邊長(zhǎng),在三角形ADE中,用余弦定理表示出cosA【詳解】設(shè)菱形的邊長(zhǎng)為3a,在三角形ADE中,AD=3a,AE=a,DE=4,有余弦定理得cosA=10a2-166a故選:B【點(diǎn)睛】本小題主要考查余弦定理解三角形,考查同角三角函數(shù)的基本關(guān)系式,考查菱形的面積公式,考查二次函數(shù)最值的求法,屬于中檔題.4、C【解析】
由可得,所以的圖像是以原點(diǎn)為圓心,為半徑的圓的上半部分;再結(jié)合圖形求解.【詳解】由可得,作出兩個(gè)函數(shù)的圖像如下:則區(qū)域①的面積等于區(qū)域②的面積,所以他們的圖像圍成的區(qū)域面積為半圓的面積,即.故選C.【點(diǎn)睛】本題考查函數(shù)圖形的性質(zhì),關(guān)鍵在于的識(shí)別.5、C【解析】
利用列舉法求得基本事件的總數(shù),利用古典概型的概率計(jì)算公式,即可求解.【詳解】由題意,連續(xù)兩次拋擲一枚質(zhì)地均勻的硬幣,基本事件包含:(正面,正面),(正面,反面),(反面,正面),(反面,反面),共有4中情況,出現(xiàn)正面向上與反面向上各一次,包含基本事件:(正面,反面),(反面,正面),共2種,所以的概率為,故選C.【點(diǎn)睛】本題主要考查了古典概型及其概率的計(jì)算問(wèn)題,其中解答中熟練利用列舉法求得基本事件的總數(shù)是解答的關(guān)鍵,著重考查了分析問(wèn)題和解答問(wèn)題的能力,屬于基礎(chǔ)題.6、C【解析】不等式所表示的平面區(qū)域如下圖所示,當(dāng)所表示直線經(jīng)過(guò)點(diǎn)時(shí),有最大值考點(diǎn):線性規(guī)劃.7、B【解析】
,所以因此,選B.8、C【解析】
根據(jù)傾斜角為得到斜率,再根據(jù)兩點(diǎn)斜率公式計(jì)算得到答案.【詳解】一直線經(jīng)過(guò)兩點(diǎn),,則直線的斜率為.直線的傾斜角為∴,即.故答案選C.【點(diǎn)睛】本題考查了直線的斜率,意在考查學(xué)生的計(jì)算能力.9、C【解析】
由題意可得||?||?cos,,再利用二倍角公式求得結(jié)果.【詳解】由題意可得||?||?cos,2sin15°4cos15°cos30°=2sin60°,故選:C.【點(diǎn)睛】本題主要考查兩個(gè)向量的數(shù)量積的定義,二倍角公式的應(yīng)用屬于基礎(chǔ)題.10、D【解析】試題分析:作數(shù)軸觀察易得.考點(diǎn):集合的基本運(yùn)算.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由,根據(jù)兩角差的正切公式可解得.【詳解】,故答案為【點(diǎn)睛】本題主要考查了兩角差的正切公式的應(yīng)用,屬于基礎(chǔ)知識(shí)的考查.12、【解析】
利用兩角和的正弦公式化函數(shù)為一個(gè)角的一個(gè)三角函數(shù)形式,然后由正弦函數(shù)的性質(zhì)得出結(jié)論.【詳解】,由得,,時(shí),.即所求減區(qū)間為.故答案為.【點(diǎn)睛】本題考查三角函數(shù)的單調(diào)性,解題時(shí)需把函數(shù)化為一個(gè)角一個(gè)三角函數(shù)形式,然后結(jié)合正弦函數(shù)的單調(diào)性求解.13、【解析】
根據(jù)題意,可令,結(jié)合,再進(jìn)行整體代換即可求解【詳解】令,則,,,則,,,則函數(shù)值域?yàn)楣蚀鸢笧椋骸军c(diǎn)睛】本題考查3倍角公式的使用,函數(shù)的轉(zhuǎn)化思想,屬于中檔題14、.【解析】
根據(jù)正切型函數(shù)的周期公式可計(jì)算出函數(shù)的最小正周期.【詳解】由正切型函數(shù)的周期公式得,因此,函數(shù)的最小正周期為,故答案為.【點(diǎn)睛】本題考查正切型函數(shù)周期的求解,解題的關(guān)鍵在于正切型函數(shù)周期公式的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.15、【解析】令,可得是首項(xiàng)為,公比為的等比數(shù)列,所以,,實(shí)數(shù)的最小值為,故答案為.16、【解析】
當(dāng)時(shí),;當(dāng)時(shí),,即,若為偶數(shù),則為奇數(shù));若為奇數(shù),則,故是偶數(shù)).因?yàn)?,,所以,同理可得,,,所以,?yīng)選答案.點(diǎn)睛:本題運(yùn)用演繹推理的思維方法,分別探求出數(shù)列各項(xiàng)的規(guī)律(成等比數(shù)列),再運(yùn)用等比數(shù)列的求和公式,使得問(wèn)題簡(jiǎn)捷、巧妙獲解.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(Ⅰ)詳見(jiàn)解析;(Ⅱ)4.【解析】試題分析:(1)在三角形中處理邊角關(guān)系時(shí),一般全部轉(zhuǎn)化為角的關(guān)系,或全部轉(zhuǎn)化為邊的關(guān)系.題中若出現(xiàn)邊的一次式一般采用正弦定理,出現(xiàn)邊的二次式一般采用余弦定理,應(yīng)用正弦、余弦定理時(shí),注意公式變形的應(yīng)用,解決三角形問(wèn)題時(shí),注意角的限制范圍;(2)在三角興中,注意隱含條件(3)解決三角形問(wèn)題時(shí),根據(jù)邊角關(guān)系靈活的選用定理和公式.(4)在解決三角形的問(wèn)題中,面積公式最常用,因?yàn)楣街屑扔羞呌钟薪?,容易和正弦定理、余弦定理?lián)系起來(lái).試題解析:(Ⅰ)由正弦定理得:即2分∴即4分∵∴即∴成等差數(shù)列.6分(Ⅱ)∵∴8分又10分由(Ⅰ)得:∴12分考點(diǎn):三角函數(shù)與解三角形.18、投資人用億元投資甲項(xiàng)目,億元投資乙項(xiàng)目,才能在確保虧損不超過(guò)億元的前提下,使可能的盈利最大.【解析】
設(shè)投資人分別用億元、億元投資甲、乙兩個(gè)項(xiàng)目,根據(jù)題意列出變量、所滿足的約束條件和線性目標(biāo)函數(shù),利用平移直線的方法得出線性目標(biāo)函數(shù)取得最大值時(shí)的最優(yōu)解,并將最優(yōu)解代入線性目標(biāo)函數(shù)可得出盈利的最大值,從而解答該問(wèn)題.【詳解】設(shè)投資人分別用億元、億元投資甲、乙兩個(gè)項(xiàng)目,由題意知,即,目標(biāo)函數(shù)為.上述不等式組表示平面區(qū)域如圖所示,陰影部分(含邊界)即可行域.由圖可知,當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),該直線在軸上截距最大,此時(shí)取得最大值,解方程組,得,所以,點(diǎn)的坐標(biāo)為.當(dāng),時(shí),取得最大值,此時(shí),(億元).答:投資人用億元投資甲項(xiàng)目,億元投資乙項(xiàng)目,才能在確保虧損不超過(guò)億元的前提下,使可能的盈利最大.【點(diǎn)睛】本題考查線性規(guī)劃的實(shí)際應(yīng)用,考查利用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題,解題的關(guān)鍵就是列出變量所滿足的約束條件,并利用數(shù)形結(jié)合思想求解,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.19、(1);(2)7.【解析】分析:(1)由三角形面積公式和已知條件求得sinA的值,進(jìn)而求得A;(2)利用余弦定理公式和(1)中求得的A求得a.詳解:(1)∵,∴,∵為銳角,∴;(2)由余弦定理得:.點(diǎn)睛:本題主要考查正弦定理邊角互化及余弦定理的應(yīng)用與特殊角的三角函數(shù),屬于簡(jiǎn)單題.對(duì)余弦定理一定要熟記兩種形式:(1);(2),同時(shí)還要熟練掌握運(yùn)用兩種形式的條件.另外,在解與三角形、三角函數(shù)有關(guān)的問(wèn)題時(shí),還需要記住等特殊角的三角函數(shù)值,以便在解題中直接應(yīng)用.20、(1)(2)3≤x≤1.【解析】試題分析:(1)利用兩角差的正切公式建立函數(shù)關(guān)系式,根據(jù)基本不等式求最值,最后根據(jù)正切函數(shù)單調(diào)性確定最大時(shí)取法,(2)利用兩角差的正切公式建立等量關(guān)系式,進(jìn)行參變分離得,再根據(jù)a的范圍確定范圍,最后解不等式得的取值范圍.試題解析:(1)當(dāng)時(shí),過(guò)作的垂線,垂足為,則,且,由已知觀察者離墻米,且,則,所以,,當(dāng)且僅當(dāng)時(shí),取“”.又因?yàn)樵谏蠁握{(diào)增,所以,當(dāng)觀察者離墻米時(shí),視角最大.(2)由題意得,,又,所以,所以,當(dāng)時(shí),,所以,即,解得或,又因?yàn)?,所以,所以的取值范圍為?1、(1)(2)【解析】
(1)由不等式恒成立,結(jié)合二次函數(shù)的性質(zhì),分類討論,即可求解;(2)要使對(duì)于恒成立,整理得只需恒成立,結(jié)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 設(shè)立中外合資經(jīng)營(yíng)企業(yè)合同(金融3)
- 河南省安陽(yáng)市滑縣第三中學(xué)2022年高三語(yǔ)文下學(xué)期期末試卷含解析
- 2025年渦輪螺槳發(fā)動(dòng)機(jī)項(xiàng)目建議書
- 2025建設(shè)項(xiàng)目工程總承包合同書示范文本
- 2025正規(guī)企業(yè)勞動(dòng)合同范例
- 瑜伽館石材裝修施工合同
- 軟件公司水地暖安裝協(xié)議
- 物流配送服務(wù)協(xié)議
- 宗教場(chǎng)所安全防護(hù)欄施工合同
- 2025交通標(biāo)線施工合同
- 2024年國(guó)家公務(wù)員考試《申論》真題(地市級(jí))及答案解析
- 2024-2030年中國(guó)游艇產(chǎn)業(yè)發(fā)展?fàn)顩r規(guī)劃分析報(bào)告權(quán)威版
- 學(xué)前兒童家庭與社區(qū)教育學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 網(wǎng)絡(luò)安全產(chǎn)品質(zhì)保與售后方案
- 2024-2025學(xué)年河北省高三上學(xué)期省級(jí)聯(lián)測(cè)政治試題及答案
- 貴州省貴陽(yáng)市2023-2024學(xué)年高一上學(xué)期期末考試 物理 含解析
- 幼兒園班級(jí)管理中的沖突解決策略研究
- 【7上英YL】蕪湖市2023-2024學(xué)年七年級(jí)上學(xué)期英語(yǔ)期中素質(zhì)教育評(píng)估試卷
- 2024年度中國(guó)鈉離子電池報(bào)告
- 2024年問(wèn)政山東拆遷協(xié)議書模板
- 浪潮iqt在線測(cè)評(píng)題及答案
評(píng)論
0/150
提交評(píng)論