版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
高考資源網(wǎng)(),您身邊的高考專家歡迎廣大教師踴躍來(lái)稿,稿酬豐厚。高考資源網(wǎng)(),您身邊的高考專家歡迎廣大教師踴躍來(lái)稿,稿酬豐厚。專題2.7欲證不等恒成立結(jié)論再造是利器【題型綜述】利用導(dǎo)數(shù)解決不等式恒成立問(wèn)題的策略:利用導(dǎo)數(shù)證明不等式,解決導(dǎo)數(shù)壓軸題,謹(jǐn)記兩點(diǎn):(Ⅰ)利用常見(jiàn)結(jié)論,如:,SKIPIF1<0,等;(Ⅱ)利用同題上一問(wèn)結(jié)論或既得結(jié)論.【典例指引】例1.已知,直線與函數(shù)的圖像都相切,且與函數(shù)的圖像的切點(diǎn)的橫坐標(biāo)為1.(I)求直線的方程及m的值;(II)若,求函數(shù)的最大值.(III)當(dāng)時(shí),求證:,取最大值,其最大值為2.(III)證明,當(dāng)時(shí),例2.設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0R,SKIPIF1<0…為自然對(duì)數(shù)的底數(shù).(Ⅰ)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,求SKIPIF1<0的取值范圍;(Ⅱ)求證:SKIPIF1<0(參考數(shù)據(jù):SKIPIF1<0).【思路引導(dǎo)】(1)先構(gòu)造函數(shù)SKIPIF1<0,再對(duì)其求導(dǎo)得到SKIPIF1<0然后分SKIPIF1<0和SKIPIF1<0兩種情形分類討論進(jìn)行分析求解:(2)借助(1)的結(jié)論,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0對(duì)SKIPIF1<0恒成立,再令SKIPIF1<0,得到SKIPIF1<0即SKIPIF1<0;又由(Ⅰ)知,當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0在SKIPIF1<0遞減,在SKIPIF1<0遞增,則SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,故有SKIPIF1<0.點(diǎn)評(píng):解答本題的第一問(wèn)時(shí),先構(gòu)造函數(shù)SKIPIF1<0,再對(duì)其求導(dǎo)得到SKIPIF1<0然后分SKIPIF1<0和SKIPIF1<0兩種情形分類討論進(jìn)行分析求解;證明本題的第二問(wèn)時(shí),充分借助(1)的結(jié)論及當(dāng)SKIPIF1<0時(shí),SKIPIF1<0對(duì)SKIPIF1<0恒成立,令SKIPIF1<0,得到SKIPIF1<0即SKIPIF1<0;進(jìn)而由(Ⅰ)知,當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0在SKIPIF1<0遞減,在SKIPIF1<0遞增,則SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,故有SKIPIF1<0.從而使得問(wèn)題巧妙獲證.例3.設(shè).(l)若對(duì)一切恒成立,求的最大值;(2)是否存在正整數(shù),使得對(duì)一切正整數(shù)都成立?若存在,求的最小值;若不存在,請(qǐng)說(shuō)明理由.【思路引導(dǎo)】(1)即在時(shí),,從而求的參數(shù)的范圍,,所以函數(shù),所以.(2)由(1)可知當(dāng)時(shí),即,取,,得,即.累加可證到.所以.(2)設(shè),則,令得.在時(shí),遞減;在時(shí),遞增.∴最小值為,故,取,,得,即.累加得.∴.故存在正整數(shù),使得.當(dāng)時(shí),取,有,不符合.故.【同步訓(xùn)練】1.已知函數(shù)SKIPIF1<0,SKIPIF1<0,(其中SKIPIF1<0,SKIPIF1<0為自然對(duì)數(shù)的底數(shù),SKIPIF1<0……).(1)令SKIPIF1<0,若SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的值;(2)在(1)的條件下,設(shè)SKIPIF1<0為整數(shù),且對(duì)于任意正整數(shù)SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的最小值.【思路引導(dǎo)】(1)由SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立,即SKIPIF1<0,利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,求出最小值,即可得到實(shí)數(shù)SKIPIF1<0的值;(2)由(1)知SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)則SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,求和后利用放縮法可得SKIPIF1<0,從而可得SKIPIF1<0的最小值.所以SKIPIF1<0.(2)由(1)知SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0(SKIPIF1<0,SKIPIF1<0)則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0.2.設(shè)函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的單調(diào)區(qū)間;(2)若SKIPIF1<0的圖象與SKIPIF1<0軸交于SKIPIF1<0兩點(diǎn),且SKIPIF1<0,求SKIPIF1<0的取值范圍;(3)令SKIPIF1<0,SKIPIF1<0,證明:SKIPIF1<0.【思路引導(dǎo)】(1)當(dāng)SKIPIF1<0時(shí),求出SKIPIF1<0,由SKIPIF1<0可得增區(qū)間,由SKIPIF1<0可得減區(qū)間;(2)求出函數(shù)的導(dǎo)數(shù),由SKIPIF1<0,得到函數(shù)的單調(diào)區(qū)間,根據(jù)函數(shù)的單調(diào)性可得SKIPIF1<0,從而確定SKIPIF1<0的范圍;(3)當(dāng)SKIPIF1<0時(shí),先證明SKIPIF1<0即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0得SKIPIF1<0,則疊加得化簡(jiǎn)即可得結(jié)果.(3)令SKIPIF1<0,∵SKIPIF1<0,∵SKIPIF1<0,得SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0即SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0得SKIPIF1<0,則疊加得:SKIPIF1<0,即SKIPIF1<0.3.已知函數(shù)SKIPIF1<0.(1)若函數(shù)SKIPIF1<0有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍;(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立的SKIPIF1<0的取值范圍,并證明SKIPIF1<0SKIPIF1<0.【思路引導(dǎo)】(1)函數(shù)SKIPIF1<0有兩個(gè)不同的零點(diǎn),等價(jià)于SKIPIF1<0=SKIPIF1<0在(SKIPIF1<0,+SKIPIF1<0)上有兩實(shí)根,利用導(dǎo)數(shù)研究函數(shù)SKIPIF1<0的單調(diào)性,結(jié)合函數(shù)圖象即可得結(jié)果;(2)結(jié)合(1)可得SKIPIF1<0<SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0SKIPIF1<0,各式相加,化簡(jiǎn)即可得結(jié)果.點(diǎn)評(píng):不等式證明問(wèn)題是近年高考命題的熱點(diǎn),命題主要是和導(dǎo)數(shù)、絕對(duì)值不等式及柯西不等式相結(jié)合,導(dǎo)數(shù)部分一旦出該類型題往往難度較大,要準(zhǔn)確解答首先觀察不等式特點(diǎn),結(jié)合已解答的問(wèn)題把要證的不等式變形,并運(yùn)用已證結(jié)論先行放縮,然后再化簡(jiǎn)或者進(jìn)一步利用導(dǎo)數(shù)證明.4.已知函數(shù)SKIPIF1<0與SKIPIF1<0.(1)若曲線SKIPIF1<0與直線SKIPIF1<0恰好相切于點(diǎn)SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的值;(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍;(3)求證:SKIPIF1<0【思路引導(dǎo)】(1)根據(jù)導(dǎo)數(shù)幾何意義得SKIPIF1<0,即得實(shí)數(shù)SKIPIF1<0的值;(2)利用分參法將不等式恒成立問(wèn)題轉(zhuǎn)化為對(duì)應(yīng)函數(shù)最值問(wèn)題SKIPIF1<0(x>1)最大值,再利用導(dǎo)數(shù)研究函數(shù)SKIPIF1<0單調(diào)性:?jiǎn)握{(diào)遞減,最后根據(jù)洛必達(dá)法則求最大值,即得實(shí)數(shù)SKIPIF1<0的取值范圍(3)先根據(jù)和的關(guān)系轉(zhuǎn)化為對(duì)應(yīng)項(xiàng)的關(guān)系:SKIPIF1<0,再利用(2)的結(jié)論SKIPIF1<0,令SKIPIF1<0,則代入放縮得證方法二:(先找必要條件)注意到SKIPIF1<0時(shí),恰有SKIPIF1<0令SKIPIF1<0則SKIPIF1<0SKIPIF1<0在SKIPIF1<0恒成立的必要條件為SKIPIF1<0即SKIPIF1<0(3)不妨設(shè)SKIPIF1<0為SKIPIF1<0前SKIPIF1<0項(xiàng)和,則SKIPIF1<0要證原不等式,只需證SKIPIF1<0而由(2)知:當(dāng)SKIPIF1<0時(shí)恒有SKIPIF1<0即SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號(hào)取SKIPIF1<0,則SKIPIF1<0即SKIPIF1<0即SKIPIF1<0即SKIPIF1<0成立,從而原不等式獲證.點(diǎn)評(píng):對(duì)于求不等式成立時(shí)的參數(shù)范圍問(wèn)題,在可能的情況下把參數(shù)分離出來(lái),使不等式一端是含有參數(shù)的不等式,另一端是一個(gè)區(qū)間上具體的函數(shù),這樣就把問(wèn)題轉(zhuǎn)化為一端是函數(shù),另一端是參數(shù)的不等式,便于問(wèn)題的解決.但要注意分離參數(shù)法不是萬(wàn)能的,如果分離參數(shù)后,得出的函數(shù)解析式較為復(fù)雜,性質(zhì)很難研究,就不要使用分離參數(shù)法.5.已知函數(shù),.(Ⅰ)若函數(shù)與的圖像在點(diǎn)處有相同的切線,求的值;(Ⅱ)當(dāng)時(shí),恒成立,求整數(shù)的最大值;(Ⅲ)證明:.【思路引導(dǎo)】(Ⅰ)求出與,由且解方程組可求的值;(Ⅱ)恒成立等價(jià)于恒成立,先證明當(dāng)時(shí)恒成立,再證明時(shí)不恒成立,進(jìn)而可得結(jié)果;(Ⅲ))由,令,即,即,令,各式相加即可得結(jié)果.(Ⅲ)由,令,即,即由此可知,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,……當(dāng)時(shí),.綜上:.即.6.已知函數(shù)SKIPIF1<0(SKIPIF1<0是自然對(duì)數(shù)的底數(shù)),SKIPIF1<0(1)求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)求SKIPIF1<0的單調(diào)區(qū)間;(3)設(shè)SKIPIF1<0,其中SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù),證明:對(duì)任意SKIPIF1<0,SKIPIF1<0【思路引導(dǎo)】(1)對(duì)函數(shù)f(x)求導(dǎo),SKIPIF1<0,代入x=1,可求得SKIPIF1<0,切點(diǎn)坐標(biāo)SKIPIF1<0再點(diǎn)斜式可求切線方程.(2)定義域SKIPIF1<0因?yàn)镾KIPIF1<0又SKIPIF1<0得SKIPIF1<0,可得單調(diào)區(qū)間.(3)SKIPIF1<0,SKIPIF1<0等價(jià)于SKIPIF1<0在SKIPIF1<0時(shí)恒成立,由(2)知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最大值SKIPIF1<0,即證.(Ⅲ)證明:因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0等價(jià)于SKIPIF1<0在SKIPIF1<0時(shí)恒成立,由(Ⅱ)知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最大值SKIPIF1<0,故SKIPIF1<0,因?yàn)镾KIPIF1<0時(shí)SKIPIF1<0,所以SKIPIF1<0,因此任意SKIPIF1<0,SKIPIF1<0.7.設(shè)函數(shù)SKIPIF1<0,其中SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)討論函數(shù)SKIPIF1<0的單調(diào)性;(3)當(dāng)SKIPIF1<0,且SKIPIF1<0時(shí)證明不等式:SKIPIF1<0【思路引導(dǎo)】(Ⅰ)代入SKIPIF1<0時(shí),求得SKIPIF1<0,求得切線的斜率,即可求解切線的方程;(Ⅱ)求得SKIPIF1<0的表達(dá)式,分SKIPIF1<0和SKIPIF1<0和SKIPIF1<0三種情況分類討論,即可求解函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(Ⅲ)先由SKIPIF1<0時(shí),證得SKIPIF1<0,再取SKIPIF1<0得SKIPIF1<0,進(jìn)而可證明上述不等式.(Ⅲ)證明:當(dāng)SKIPIF1<0-1時(shí),SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上恒正,所以,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),恒有SKIPIF1<0,即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,對(duì)任意正整數(shù)SKIPIF1<0,取SKIPIF1<0得SKIPIF1<0,所以,SKIPIF1<0=SKIPIF1<0=SKIPIF1<0SKIPIF1<0=SKIPIF1<0點(diǎn)評(píng):本題主要考查了函數(shù)的綜合問(wèn)題,其中解答中涉及到導(dǎo)數(shù)的幾何意義求解在某點(diǎn)的切線方程的求解、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求解函數(shù)的單調(diào)區(qū)間,不等關(guān)系的證明等知識(shí)點(diǎn)的綜合考查,試題有一定的難度,屬于中檔試題,其中解得中對(duì)導(dǎo)數(shù)的合理分類討論和根據(jù)題設(shè)合理變換和換元是解答的難點(diǎn).8.已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),討論SKIPIF1<0的單調(diào)性;(2)當(dāng)SKIPIF1<0時(shí),若SKIPIF1<0,證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的圖象恒在SKIPIF1<0的圖象上方;(3)證明:SKIPIF1<0.【思路引導(dǎo)】(1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;(2)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,求出函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)性質(zhì)推導(dǎo)出SKIPIF1<0恒成立,由此能證明SKIPIF1<0的圖象恒在SKIPIF1<0圖象的上方;(3)由SKIPIF1<0,設(shè)SKIPIF1<0,求出函數(shù)的導(dǎo)數(shù),從而SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,從而證明結(jié)論成立即可.(3)由(2)知,即,令,則,即,點(diǎn)評(píng):本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性,由SKIPIF1<0,得函數(shù)單調(diào)遞增,SKIPIF1<0得函數(shù)單調(diào)遞減;考查將問(wèn)題轉(zhuǎn)化為恒成立問(wèn)題,正確分離參數(shù)是關(guān)鍵,也是常用的一種手段.通過(guò)分離參數(shù)可轉(zhuǎn)化為SKIPIF1<0或SKIPIF1<0恒成立,即SKIPIF1<0或SKIPIF1<0即可,利用導(dǎo)數(shù)知識(shí)結(jié)合單調(diào)性求出SKIPIF1<0或SKIPIF1<0即得解,此題最大的難點(diǎn)在于構(gòu)造法證明不等式.9.已知函數(shù)SKIPIF1<0.(1)若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上遞增,求實(shí)數(shù)SKIPIF1<0的取值范圍;(2)求證:SKIPIF1<0.【思路引導(dǎo)】SKIPIF1<0對(duì)函數(shù)求導(dǎo),可知其導(dǎo)數(shù)在SKIPIF1<0大于SKIPIF1<0,利用分離變量轉(zhuǎn)化為函數(shù)求恒成立問(wèn)題,可得SKIPIF1<0的取值范圍;SKIPIF1<0利用SKIPIF1<0中結(jié)論可得SKIPIF1<0,則有SKIPIF1<0,利用累加和裂項(xiàng)可證不等式.所以SKIPIF1<0,SKIPIF1<0,,....,,,所以SKIPIF1<0,即SKIPIF1<0,得證.10.已知函數(shù)SKIPIF1<0(其中SKIPIF1<0,SKIPIF1<0).(1)若函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),求實(shí)數(shù)SKIPIF1<0的取值范圍;(2)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0在SKIPIF1<0上的最大值和最小值;(3)當(dāng)SKIPIF1<0時(shí),求證:對(duì)于任意大于1的正整數(shù)SKIPIF1<0,都有SKIPIF1<0.【思路引導(dǎo)】(1)先求出函數(shù)SKIPIF1<0的導(dǎo)數(shù)SKIPIF1<0,由題意可知:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,解出SKIPIF1<0的取值范圍即可;(2)求導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,比較端點(diǎn)的函數(shù)值,即可求得結(jié)論;(3)利用(2)的結(jié)論,只要令SKIPIF1<0,利用放縮法證明即可.SKIPIF1<0在SKIPIF1<0上有唯一的極小值點(diǎn),也是最小值點(diǎn),SKIPIF1<0又因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0在SKIPIF1<0上有的最大值是SKIPIF1<0綜上所述,SKIPIF1<0在SKIPIF1<0上有的最大值是SKIPIF1<0,最小值是011.已知函數(shù)SKIPIF1<0(Ⅰ)若SKIPIF1<0有唯一解,求實(shí)數(shù)SKIPIF1<0的值;(Ⅱ)證明:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0(附:SKIPIF1<0)【思路引導(dǎo)】(Ⅰ)使SKIPIF1<0有唯一解,只需滿足SKIPIF1<0,且SKIPIF1<0的解唯一,求導(dǎo)研究函數(shù),注意分類討論利用極值求函數(shù)最大值;(Ⅱ)只需證即證SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,利用單調(diào)性,極值求其最小值,證明其大于零即可.②當(dāng)SKIPIF1<0,且SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0有唯一的一個(gè)最大值為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),故SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,故令SKIPIF1<0,解得SKIPIF1<0,此時(shí)SKIPIF1<0有唯一的一個(gè)最大值為SKIPIF1<0,且SKIPIF1<0,故SKIPIF1<0的解集是SKIPIF1<0,符合題意;綜上,可得SKIPIF1<0(Ⅱ)要證當(dāng)SKIPIF1<0時(shí),SKIPIF1<0即證當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即證SKIPIF1<0由(Ⅰ)得,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,又SKIPIF1<0,從而SKIPIF1<0,故只需證SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)成立;令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0因?yàn)镾KIPIF1<0單調(diào)遞增,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減,即SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,即SKIPIF1<0單調(diào)遞增,且SKIPIF1<0,由零點(diǎn)存在定理,可知SKIPIF1<0,使得SKIPIF1<0,故當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0的最小值是SKIPIF1<0或SKIPIF1<0由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),所以SKIPIF1<0,原不等式成立.點(diǎn)評(píng):本題考查函數(shù)的單調(diào)性極值及恒成立問(wèn)題,涉及函數(shù)不等式的證明,綜合性強(qiáng),難度大,屬于難題.處理導(dǎo)數(shù)大題時(shí),注意分層得分的原則,力爭(zhēng)第一二問(wèn)答對(duì),第三問(wèn)爭(zhēng)取能寫(xiě)點(diǎn),一般涉及求函數(shù)單調(diào)性及極值時(shí),比較容易入手,求導(dǎo)后注意分類討論,對(duì)于恒成立問(wèn)題一般要分離參數(shù),然后利用函數(shù)導(dǎo)數(shù)求函數(shù)的最大值或最小值,對(duì)于含有不等式的函數(shù)問(wèn)題,一般要構(gòu)造函數(shù),利用函數(shù)的單調(diào)性來(lái)解決,但涉及技巧比較多,需要多加體會(huì).12.已知函數(shù)SKIPIF1<0.(Ⅰ)若函數(shù)SKIPIF1<0有極值,求實(shí)數(shù)SKIPIF1<0的取值范圍;(Ⅱ)當(dāng)SKIPIF1<0有兩個(gè)極值點(diǎn)(記為SKIPIF1<0和SKIPIF1<0)時(shí),求證:SKIPIF1<0.【思路引導(dǎo)】(Ⅰ)由已知得x>0,且有SKIPIF1<0,,由此利用導(dǎo)數(shù)性質(zhì)能求出當(dāng)函數(shù)f(x)存在極值時(shí),實(shí)數(shù)a的取值范圍是a>4.
(Ⅱ)x1,x2是x2+(2-a)x+1=0的兩個(gè)解,從而x1x2=1,欲證原不等式成立,只需證明f(x)-lnx≥f(x)-x+1成立,即證lnx-x+1≤0成立,由此利用構(gòu)造法和導(dǎo)數(shù)性質(zhì)能證.(Ⅱ)∵SKIPIF1<0,SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)保品電商銷售策略模板
- 小學(xué)教育與科技結(jié)合的勞動(dòng)教育新模式探索與實(shí)踐案例分享
- 心理健康教育在小學(xué)教育中的推廣策略
- 小學(xué)語(yǔ)文課堂上的成語(yǔ)故事教學(xué)
- 小區(qū)內(nèi)電子產(chǎn)品的品牌建設(shè)與推廣策略
- 二零二五年度環(huán)境風(fēng)險(xiǎn)評(píng)估與管理協(xié)議書(shū)集3篇
- 小學(xué)生課外閱讀在小學(xué)低年級(jí)語(yǔ)文教學(xué)中的價(jià)值
- 專項(xiàng)工程2024年勞務(wù)支付合同
- 小學(xué)課外活動(dòng)策劃的專業(yè)技巧與工具
- 2025估價(jià)委托合同樣本
- 《安的種子》幼兒故事
- 機(jī)械工程師筆試題目
- 實(shí)用衛(wèi)生統(tǒng)計(jì)學(xué)題庫(kù)(附參考答案)
- 浙江省杭州市拱墅區(qū)2023-2024學(xué)年數(shù)學(xué)三年級(jí)第一學(xué)期期末質(zhì)量檢測(cè)試題含答案
- 傷口敷料種類及作用-課件
- 電力安全工作規(guī)程(變電部分)課件
- 高考語(yǔ)文復(fù)習(xí):作文主題訓(xùn)練自然情懷
- 減速機(jī)基礎(chǔ)知識(shí)-課件
- 2023年小學(xué)生六年級(jí)畢業(yè)班評(píng)語(yǔ)
- 單位干部職工捐款情況統(tǒng)計(jì)表
- 環(huán)保設(shè)施安全風(fēng)險(xiǎn)告知卡
評(píng)論
0/150
提交評(píng)論