版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2022-2023學(xué)年高一下數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知是定義在上不恒為的函數(shù),且對任意,有成立,,令,則有()A.為等差數(shù)列 B.為等比數(shù)列C.為等差數(shù)列 D.為等比數(shù)列2.已知是平面內(nèi)兩個(gè)互相垂直的向量,且,若向量滿足,則的最大值是()A.1 B. C.3 D.3.等差數(shù)列的前n項(xiàng)和為,且,,則(
)A.10 B.20 C. D.4.已知平面內(nèi),,,且,則的最大值等于()A.13 B.15 C.19 D.215.已知組數(shù)據(jù),,…,的平均數(shù)為2,方差為5,則數(shù)據(jù)2+1,2+1,…,2+1的平均數(shù)與方差分別為()A.=4,=10 B.=5,=11C.=5,=20 D.=5,=216.已知向量,則向量的夾角為()A. B. C. D.7.在△ABC中,,P是BN上的一點(diǎn),若,則實(shí)數(shù)m的值為A.3 B.1 C. D.8.已知直線x+ay+4=0與直線ax+4y-3=0互相平行,則實(shí)數(shù)a的值為()A.±2 B.2 C.-2 D.09.某公司計(jì)劃在甲、乙兩個(gè)電視臺(tái)做總時(shí)間不超過300分鐘的廣告,廣告費(fèi)用不超過9萬元,甲、乙電視臺(tái)的廣告費(fèi)標(biāo)準(zhǔn)分別是500元/分鐘和200元/分鐘,假設(shè)甲、乙兩個(gè)電視臺(tái)為該公司做的廣告能給公司帶來的收益分別為0.4萬元/分鐘和0.2萬元/分鐘,那么該公司合理分配在甲、乙兩個(gè)電視臺(tái)的廣告時(shí)間,能使公司獲得最大的收益是()萬元A.72 B.80 C.84 D.9010.已知分別是的邊的中點(diǎn),則①;②;③中正確等式的個(gè)數(shù)為()A.0 B.1 C.2 D.3二、填空題:本大題共6小題,每小題5分,共30分。11.某校高一、高二、高三分別有學(xué)生1600名、1200名、800名,為了解該校高中學(xué)生的牙齒健康狀況,按各年級(jí)的學(xué)生數(shù)進(jìn)行分層抽樣,若高三抽取20名學(xué)生,則高一、高二共抽取的學(xué)生數(shù)為.12.設(shè)為實(shí)數(shù),為不超過實(shí)數(shù)的最大整數(shù),如,.記,則的取值范圍為,現(xiàn)定義無窮數(shù)列如下:,當(dāng)時(shí),;當(dāng)時(shí),,若,則________.13.計(jì)算:=_______________.14.用秦九韶算法求多項(xiàng)式當(dāng)時(shí)的值的過程中:,__.15.如圖,點(diǎn)為正方形邊上異于點(diǎn)的動(dòng)點(diǎn),將沿翻折成,使得平面平面,則下列說法中正確的是__________.(填序號(hào))(1)在平面內(nèi)存在直線與平行;(2)在平面內(nèi)存在直線與垂直(3)存在點(diǎn)使得直線平面(4)平面內(nèi)存在直線與平面平行.(5)存在點(diǎn)使得直線平面16.設(shè)扇形的半徑長為,面積為,則扇形的圓心角的弧度數(shù)是三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.在數(shù)列中,,.(1)求證:數(shù)列是等差數(shù)列;(2)求數(shù)列的前項(xiàng)和.18.已知某公司生產(chǎn)某款手機(jī)的年固定成本為400萬元,每生產(chǎn)1萬部還需另投入160萬元.設(shè)公司一年內(nèi)共生產(chǎn)該款手機(jī)x(x≥40)萬部且并全部銷售完,每萬部的收入為R(x)萬元,且R(x)=74000(1)寫出年利潤W(萬元)關(guān)于年產(chǎn)量x(萬部)的函數(shù)關(guān)系式;(2)當(dāng)年產(chǎn)量為多少萬部時(shí),公司在該款手機(jī)的生產(chǎn)中所獲得的利潤最大?并求出最大利潤.19.已知向量,滿足:,,.(Ⅰ)求與的夾角;(Ⅱ)求.20.某專賣店為了對新產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按不同的單價(jià)試銷,調(diào)查統(tǒng)計(jì)如下表:售價(jià)(元)45678周銷量(件)9085837973(1)求周銷量y(件)關(guān)于售價(jià)x(元)的線性回歸方程;(2)按(1)中的線性關(guān)系,已知該產(chǎn)品的成本為2元/件,為了確保周利潤大于598元,則該店應(yīng)該將產(chǎn)品的售價(jià)定為多少?參考公式:,.參考數(shù)據(jù):,21.已知.(Ⅰ)化簡;(Ⅱ)已知,求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】令,得到得到,.,說明為等差數(shù)列,故C正確,根據(jù)選項(xiàng),排除A,D.∵.顯然既不是等差也不是等比數(shù)列.故選C.2、D【解析】
設(shè)出平面向量的夾角,求出的夾角,最后利用平面向量數(shù)量積的運(yùn)算公式進(jìn)行化簡等式,最后利用輔助角公式求出的最大值.【詳解】設(shè)平面向量的夾角為,因?yàn)槭瞧矫鎯?nèi)兩個(gè)互相垂直的向量,所以平面向量的夾角為,因?yàn)槭瞧矫鎯?nèi)兩個(gè)互相垂直的向量,所以.,,,其中,顯然當(dāng)時(shí),有最大值,即.故選:D【點(diǎn)睛】本題考查平面向量數(shù)量積的性質(zhì)及運(yùn)算,屬于中檔題.3、D【解析】
由等差數(shù)列的前項(xiàng)和的性質(zhì)可得:,,也成等差數(shù)列,即可得出.【詳解】解:由等差數(shù)列的前項(xiàng)和的性質(zhì)可得:,,也成等差數(shù)列,,,解得.故選:.【點(diǎn)睛】本題考查了等差數(shù)列的前項(xiàng)和公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.4、A【解析】
令,,將,表示成,,即可將表示成,展開可得:,再利用基本不等式即可求得其最大值.【詳解】令,,則又,所以當(dāng)且僅當(dāng)時(shí),等號(hào)成立.故選:A【點(diǎn)睛】本題主要考查了平面向量基本定理的應(yīng)用及利用基本不等式求最值,考查轉(zhuǎn)化能力及計(jì)算能力,屬于難題.5、C【解析】
根據(jù)題意,利用數(shù)據(jù)的平均數(shù)和方差的性質(zhì)分析可得答案.【詳解】根據(jù)題意,數(shù)據(jù),,,的平均數(shù)為2,方差為5,則數(shù)據(jù),,,的平均數(shù),其方差;故選.【點(diǎn)睛】本題考查數(shù)據(jù)的平均數(shù)、方差的計(jì)算,關(guān)鍵是掌握數(shù)據(jù)的平均數(shù)、方差的計(jì)算公式,屬于基礎(chǔ)題.6、C【解析】試題分析:,設(shè)向量的夾角為,考點(diǎn):向量夾角及向量的坐標(biāo)運(yùn)算點(diǎn)評:設(shè)夾角為,7、C【解析】分析:根據(jù)向量的加減運(yùn)算法則,通過,把用和表示出來,可得的值.詳解:如圖:∵,,
則
又三點(diǎn)共線,故得.
故選C..點(diǎn)睛:本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意平面向量加法法則的合理運(yùn)用.8、A【解析】
根據(jù)兩直線平性的必要條件可得4-a【詳解】∵直線x+ay+4=0與直線ax+4y-3=0互相平行;∴4×1-a?a=0,即4-a2=0當(dāng)a=2時(shí),直線分別為x+2y+4=0和2x+4y-3=0,平行,滿足條件當(dāng)a=-2時(shí),直線分別為x-2y+4=0和-2x+4y-3=0,平行,滿足條件;所以a=±2;故答案選A【點(diǎn)睛】本題考查兩直線平行的性質(zhì),解題時(shí)注意平行不包括重合的情況,屬于基礎(chǔ)題。9、B【解析】
設(shè)公司在甲、乙兩個(gè)電視臺(tái)的廣告時(shí)間分別為分鐘,總收益為元,根據(jù)題意得到約束條件,目標(biāo)函數(shù),平行目標(biāo)函數(shù)圖象找到在縱軸上截距最大時(shí)所經(jīng)過的點(diǎn),把點(diǎn)的坐標(biāo)代入目標(biāo)函數(shù)中即可.【詳解】設(shè)公司在甲、乙兩個(gè)電視臺(tái)的廣告時(shí)間分別為分鐘,總收益為元,則由題意可得可行解域:,目標(biāo)函數(shù)為可行解域化簡得,,在平面直角坐標(biāo)系內(nèi),畫出可行解域,如下圖所示:作直線,即,平行移動(dòng)直線,當(dāng)直線過點(diǎn)時(shí),目標(biāo)函數(shù)取得最大值,聯(lián)立,解得,所以點(diǎn)坐標(biāo)為,因此目標(biāo)函數(shù)最大值為,故本題選B.【點(diǎn)睛】本題考查了應(yīng)用線性規(guī)劃知識(shí)解決實(shí)際問題的能力,正確列出約束條件,畫出可行解域是解題的關(guān)鍵.10、C【解析】分別是的邊的中點(diǎn);故①錯(cuò)誤,②正確故③正確;所以選C.二、填空題:本大題共6小題,每小題5分,共30分。11、70【解析】設(shè)高一、高二抽取的人數(shù)分別為,則,解得.【考點(diǎn)】分層抽樣.12、【解析】
根據(jù)已知條件,計(jì)算數(shù)列的前幾項(xiàng),觀察得出無窮數(shù)列呈周期性變化,即可求出的值?!驹斀狻慨?dāng)時(shí),,,,,……,無窮數(shù)列周期性變化,周期為2,所以。【點(diǎn)睛】本題主要考查學(xué)生的數(shù)學(xué)抽象能力,通過取整函數(shù)得到數(shù)列,觀察數(shù)列的特征,求數(shù)列中的某項(xiàng)值。13、【解析】試題分析:考點(diǎn):兩角和的正切公式點(diǎn)評:本題主要考查兩角和的正切公式變形的運(yùn)用,抓住和角是特殊角,是解題的關(guān)鍵.14、1【解析】
f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,進(jìn)而得出.【詳解】f(x)=5x5+2x4+3x3﹣2x2+x﹣8=((((5x+2)x+3)x﹣2)x+1)﹣8,當(dāng)x=2時(shí),v0=5,v1=5×2+2=12,v2=12×2+3=27,v3=27×2﹣2=1.故答案為:1.【點(diǎn)睛】本題考查了秦九韶算法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.15、(2)(4)【解析】
采用逐一驗(yàn)證法,利用線面的位置關(guān)系判斷,可得結(jié)果.【詳解】(1)錯(cuò),若在平面內(nèi)存在直線與平行,則//平面,可知//,而與相交,故矛盾(2)對,如圖作,根據(jù)題意可知平面平面所以,作,點(diǎn)在平面,則平面,而平面,所以,故正確(3)錯(cuò),若平面,則,而所以平面,則,矛盾(4)對,如圖延長交于點(diǎn)連接,作//平面,平面,平面,所以//平面,故存在(5)錯(cuò),若平面,則又,所以平面所以,可知點(diǎn)在以為直徑的圓上又該圓與無交點(diǎn),所以不存在.故答案為:(2)(4)【點(diǎn)睛】本題主要考查線線,線面,面面之間的關(guān)系,數(shù)形結(jié)合在此發(fā)揮重要作用,屬中檔題.16、2【解析】試題分析:設(shè)扇形圓心角的弧度數(shù)為α,則扇形面積為S=αr2=α×22=4解得:α=2考點(diǎn):扇形面積公式.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析.(2).【解析】
(1)根據(jù)數(shù)列通項(xiàng)公式的特征,我們對,兩邊同時(shí)除以,得到,利用等差數(shù)列的定義,就可以證明出數(shù)列是等差數(shù)列;(2)求出數(shù)列的通項(xiàng)公式,利用裂項(xiàng)相消法,求出數(shù)列的前n項(xiàng)和.【詳解】(1)的兩邊同除以,得,又,所以數(shù)列是首項(xiàng)為4,公差為2的等差數(shù)列.(2)由(1)得,即,故,所以【點(diǎn)睛】本題考查了證明等差數(shù)列的方法以及用裂項(xiàng)相消法求數(shù)列前和.已知,都是等差數(shù)列,那么數(shù)列的前和就可以用裂項(xiàng)相消法來求解.18、(1)W=73600-400000x-160x,(x≥40);(2)當(dāng)x=50【解析】
(1)根據(jù)題意,即可求解利潤關(guān)于產(chǎn)量的關(guān)系式為W=(2)由(1)的關(guān)系式,利用基本不等式求得最大值,即可求解最大利潤.【詳解】(1)由題意,可得利潤W關(guān)于年產(chǎn)量x的函數(shù)關(guān)系式為W=xRx=74000-400000x-160x-400=73600-2由1可得W=73600-=73600-16000=57600,當(dāng)且僅當(dāng)400000x=160,即x=50時(shí)取等號(hào),所以當(dāng)x=50時(shí),【點(diǎn)睛】本題主要考查了函數(shù)的實(shí)際應(yīng)用問題,以及利用基本不等式求最值,其中解答中認(rèn)真審題,得出利潤W關(guān)于年產(chǎn)量x的函數(shù)關(guān)系式,再利用基本不等式求解是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.19、(Ⅰ)(Ⅱ)【解析】
(I)利用向量數(shù)量積的運(yùn)算,化簡,得到,由此求得的大小.(II)先利用向量的數(shù)量積運(yùn)算,求得的值,由此求得的值.【詳解】解:(Ⅰ)因?yàn)椋裕裕驗(yàn)?,所以.(Ⅱ)因?yàn)椋梢阎?,,所以.所以.【點(diǎn)睛】本小題主要考查向量數(shù)量積運(yùn)算,考查向量夾角的計(jì)算,考查向量模的求法,屬于基礎(chǔ)題.20、(1);(2)14元【解析】
(1)由表中數(shù)據(jù)求得,結(jié)合參考數(shù)據(jù)可得.再代入方程即可求得線性回歸方程.(2)設(shè)售價(jià)為元,代入(1)中的回歸方程,求得銷量.即可求得利潤的表達(dá)式.由于周利潤大于598
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度航空運(yùn)輸貨物代理委托及質(zhì)量控制合同3篇
- 2024離婚財(cái)產(chǎn)分割協(xié)議公證與投資分割
- 2024版軟件許可與技術(shù)支持合同
- 二零二五年度股權(quán)激勵(lì)與員工離職補(bǔ)償合同樣本3篇
- 年度飛機(jī)碳剎車預(yù)制件戰(zhàn)略市場規(guī)劃報(bào)告
- 高校二零二五年度實(shí)驗(yàn)室科研人員聘用合同2篇
- 針對2025年度環(huán)保項(xiàng)目的技術(shù)研發(fā)合作合同3篇
- 2024-2025學(xué)年高中語文第三課神奇的漢字3方塊的奧妙-漢字的結(jié)構(gòu)練習(xí)含解析新人教版選修語言文字應(yīng)用
- 2024-2025學(xué)年高中政治第三單元思想方法與創(chuàng)新意識(shí)第9課第2框用對立統(tǒng)一的觀點(diǎn)看問題訓(xùn)練含解析新人教版必修4
- 2025年度特色餐飲業(yè)司爐員綜合管理服務(wù)合同3篇
- GB/T 11072-1989銻化銦多晶、單晶及切割片
- GB 15831-2006鋼管腳手架扣件
- 有機(jī)化學(xué)機(jī)理題(福山)
- 醫(yī)學(xué)會(huì)自律規(guī)范
- 商務(wù)溝通第二版第4章書面溝通
- 950項(xiàng)機(jī)電安裝施工工藝標(biāo)準(zhǔn)合集(含管線套管、支吊架、風(fēng)口安裝)
- 微生物學(xué)與免疫學(xué)-11免疫分子課件
- 《動(dòng)物遺傳育種學(xué)》動(dòng)物醫(yī)學(xué)全套教學(xué)課件
- 弱電工程自檢報(bào)告
- 民法案例分析教程(第五版)完整版課件全套ppt教學(xué)教程最全電子教案
- 7.6用銳角三角函數(shù)解決問題 (2)
評論
0/150
提交評論