81數(shù)據(jù)倉(cāng)庫(kù)與數(shù)據(jù)挖掘課件_第1頁(yè)
81數(shù)據(jù)倉(cāng)庫(kù)與數(shù)據(jù)挖掘課件_第2頁(yè)
81數(shù)據(jù)倉(cāng)庫(kù)與數(shù)據(jù)挖掘課件_第3頁(yè)
81數(shù)據(jù)倉(cāng)庫(kù)與數(shù)據(jù)挖掘課件_第4頁(yè)
81數(shù)據(jù)倉(cāng)庫(kù)與數(shù)據(jù)挖掘課件_第5頁(yè)
已閱讀5頁(yè),還剩34頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

Chapter20:DataAnalysisChapter20:DataAnalysisDecisionSupportSystemsDataWarehousingDataMiningClassificationAssociationRulesClusteringDecisionSupportSystemsDecision-supportsystemsareusedtomakebusinessdecisions,oftenbasedondatacollectedbyon-linetransaction-processingsystems.Examplesofbusinessdecisions:Whatitemstostock?Whatinsurancepremiumtochange?Towhomtosendadvertisements?Examplesofdatausedformakingdecisions Retailsalestransactiondetails Customerprofiles(income,age,gender,etc.)Decision-SupportSystems:OverviewDataanalysistasksaresimplifiedbyspecializedtoolsandSQLextensionsExampletasksForeachproductcategoryandeachregion,whatwerethetotalsalesinthelastquarterandhowdotheycomparewiththesamequarterlastyearAsabove,foreachproductcategoryandeachcustomercategoryStatisticalanalysispackages(e.g.,:S++)canbeinterfacedwithdatabasesStatisticalanalysisisalargefield,butnotcoveredhereDataminingseekstodiscoverknowledgeautomaticallyintheformofstatisticalrulesandpatternsfromlargedatabases.Adatawarehousearchivesinformationgatheredfrommultiplesources,andstoresitunderaunifiedschema,atasinglesite.Importantforlargebusinessesthatgeneratedatafrommultipledivisions,possiblyatmultiplesitesDatamayalsobepurchasedexternallyDataWarehousingDatasourcesoftenstoreonlycurrentdata,nothistoricaldataCorporatedecisionmakingrequiresaunifiedviewofallorganizationaldata,includinghistoricaldataAdatawarehouseisarepository(archive)ofinformationgatheredfrommultiplesources,storedunderaunifiedschema,atasinglesiteGreatlysimplifiesquerying,permitsstudyofhistoricaltrendsShiftsdecisionsupportqueryloadawayfromtransactionprocessingsystemsDataWarehousingDesignIssuesWhenandhowtogatherdataSourcedrivenarchitecture:datasourcestransmitnewinformationtowarehouse,eithercontinuouslyorperiodically(e.g.,atnight)Destinationdrivenarchitecture:warehouseperiodicallyrequestsnewinformationfromdatasourcesKeepingwarehouseexactlysynchronizedwithdatasources(e.g.,usingtwo-phasecommit)istooexpensiveUsuallyOKtohaveslightlyout-of-datedataatwarehouseData/updatesareperiodicallydownloadedformonlinetransactionprocessing(OLTP)systems.WhatschematouseSchemaintegrationMoreWarehouseDesignIssuesDatacleansingE.g.,correctmistakesinaddresses(misspellings,zipcodeerrors)MergeaddresslistsfromdifferentsourcesandpurgeduplicatesHowtopropagateupdatesWarehouseschemamaybea(materialized)viewofschemafromdatasourcesWhatdatatosummarizeRawdatamaybetoolargetostoreon-lineAggregatevalues(totals/subtotals)oftensufficeQueriesonrawdatacanoftenbetransformedbyqueryoptimizertouseaggregatevaluesWarehouseSchemasDimensionvaluesareusuallyencodedusingsmallintegersandmappedtofullvaluesviadimensiontablesResultantschemaiscalledastarschemaMorecomplicatedschemastructuresSnowflakeschema:multiplelevelsofdimensiontablesConstellation:multiplefacttablesDataWarehouseSchemaDataMiningDataminingistheprocessofsemi-automaticallyanalyzinglargedatabasestofindusefulpatterns

PredictionbasedonpasthistoryPredictifacreditcardapplicantposesagoodcreditrisk,basedonsomeattributes(income,jobtype,age,..)andpasthistoryPredictifapatternofphonecallingcardusageislikelytobefraudulentSomeexamplesofpredictionmechanisms:ClassificationGivenanewitemwhoseclassisunknown,predicttowhichclassitbelongsRegressionformulaeGivenasetofmappingsforanunknownfunction,predictthefunctionresultforanewparametervalueDataMining(Cont.)DescriptivePatternsAssociationsFindbooksthatareoftenboughtby“similar”customers.Ifanewsuchcustomerbuysonesuchbook,suggesttheotherstoo.AssociationsmaybeusedasafirststepindetectingcausationE.g.,associationbetweenexposuretochemicalXandcancer,ClustersE.g.,typhoidcaseswereclusteredinanareasurroundingacontaminatedwellDetectionofclustersremainsimportantindetectingepidemicsClassificationRulesClassificationruleshelpassignnewobjectstoclasses.E.g.,givenanewautomobileinsuranceapplicant,shouldheorshebeclassifiedaslowrisk,mediumriskorhighrisk?Classificationrulesforaboveexamplecoulduseavarietyofdata,suchaseducationallevel,salary,age,etc.personP,P.degree=mastersandP.income>75,000P.credit=excellentpersonP,P.degree=bachelorsand

(P.income25,000andP.income75,000)

P.credit=goodRulesarenotnecessarilyexact:theremaybesomemisclassificationsClassificationrulescanbeshowncompactlyasadecisiontree.DecisionTreeConstructionofDecisionTreesTrainingset:adatasampleinwhichtheclassificationisalreadyknown.

Greedytopdowngenerationofdecisiontrees.Eachinternalnodeofthetreepartitionsthedataintogroupsbasedonapartitioningattribute,andapartitioningcondition

forthenodeLeafnode:all(ormost)oftheitemsatthenodebelongtothesameclass,orallattributeshavebeenconsidered,andnofurtherpartitioningispossible.BestSplitsPickbestattributesandconditionsonwhichtopartitionThepurityofasetSoftraininginstancescanbemeasuredquantitativelyinseveralways.Notation:numberofclasses=k,numberofinstances=|S|,

fractionofinstancesinclassi=pi.TheGinimeasureofpurityisdefinedas[ Gini(S)=1-

Whenallinstancesareinasingleclass,theGinivalueis0Itreachesitsmaximum(of1–1/k)ifeachclassthesamenumberofinstances.

ki-1p2iBestSplits(Cont.)Anothermeasureofpurityistheentropy

measure,whichisdefinedas entropy(S)=–WhenasetSissplitintomultiplesetsSi,I=1,2,…,r,wecanmeasurethepurityoftheresultantsetofsetsas:

purity(S1,S2,…..,Sr)=TheinformationgainduetoparticularsplitofSintoSi,i=1,2,….,r

Information-gain(S,{S1,S2,….,Sr)=purity(S)–purity(S1,S2,…Sr)

ri=1|Si||S|purity(Si)ki-1pilog2piBestSplits(Cont.)Measureof“cost”ofasplit:

Information-content(S,{S1,S2,…..,Sr}))=–Information-gainratio=Information-gain(S,{S1,S2,……,Sr}) Information-content(S,{S1,S2,…..,Sr})Thebestsplitistheonethatgivesthemaximuminformationgainratiolog2ri-1|Si||S||Si||S|

FindingBestSplitsCategoricalattributes(withnomeaningfulorder):Multi-waysplit,onechildforeachvalueBinarysplit:tryallpossiblebreakupofvaluesintotwosets,andpickthebestContinuous-valuedattributes(canbesortedinameaningfulorder)Binarysplit:Sortvalues,tryeachasasplitpointE.g.,ifvaluesare1,10,15,25,splitat1,10,15PickthevaluethatgivesbestsplitMulti-waysplit:AseriesofbinarysplitsonthesameattributehasroughlyequivalenteffectDecision-TreeConstructionAlgorithm

ProcedureGrowTree(S)

Partition(S);

ProcedurePartition(S)

if(purity(S)>por|S|<s)then

return;

foreachattributeA

evaluatesplitsonattributeA;

Usebestsplitfound(acrossallattributes)topartition

SintoS1,S2,….,Sr,

fori=1,2,…..,r

Partition(Si);OtherTypesofClassifiersNeuralnetclassifiersarestudiedinartificialintelligenceandarenotcoveredhereBayesianclassifiersuseBayestheorem,whichsays

p(cj|d)=p(d|cj)p(cj)

p(d)

where

p(cj|d)=probabilityofinstancedbeinginclasscj,

p(d|cj)=probabilityofgeneratinginstancedgivenclasscj,

p(cj

)

=probabilityofoccurrenceofclasscj,and

p(d)=probabilityofinstancedoccuring

Na?veBayesianClassifiersBayesianclassifiersrequirecomputationofp(d|cj)precomputationofp(cj)

p(d)canbeignoredsinceitisthesameforallclassesTosimplifythetask,na?veBayesianclassifiersassumeattributeshaveindependentdistributions,andtherebyestimate

p(d|cj)=p(d1|cj)*p(d2|cj)*….*(p(dn|cj)Eachofthep(di|cj)canbeestimatedfromahistogramondivaluesforeachclasscjthehistogramiscomputedfromthetraininginstancesHistogramsonmultipleattributesaremoreexpensivetocomputeandstoreRegressionRegressiondealswiththepredictionofavalue,ratherthanaclass.Givenvaluesforasetofvariables,X1,X2,…,Xn,wewishtopredictthevalueofavariableY.Onewayistoinfercoefficientsa0,a1,a1,…,ansuchthat

Y=a0+a1*X1+a2*X2+…+an*Xn

Findingsuchalinearpolynomialiscalledlinearregression.Ingeneral,theprocessoffindingacurvethatfitsthedataisalsocalledcurvefitting.Thefitmayonlybeapproximatebecauseofnoiseinthedata,orbecausetherelationshipisnotexactlyapolynomialRegressionaimstofindcoefficientsthatgivethebestpossiblefit.AssociationRulesRetailshopsareofteninterestedinassociationsbetweendifferentitemsthatpeoplebuy.SomeonewhobuysbreadisquitelikelyalsotobuymilkApersonwhoboughtthebookDatabaseSystemConceptsisquitelikelyalsotobuythebookOperatingSystemConcepts.Associationsinformationcanbeusedinseveralways.E.g.,whenacustomerbuysaparticularbook,anonlineshopmaysuggestassociatedbooks.Associationrules:

breadmilkDB-Concepts,OS-ConceptsNetworksLefthandside:antecedent,righthandside:consequentAnassociationrulemusthaveanassociatedpopulation;thepopulationconsistsofasetofinstancesE.g.,eachtransaction(sale)atashopisaninstance,andthesetofalltransactionsisthepopulationAssociationRules(Cont.)Ruleshaveanassociatedsupport,aswellasanassociatedconfidence.Support

isameasureofwhatfractionofthepopulationsatisfiesboththeantecedentandtheconsequentoftherule.E.g.,supposeonly0.001percentofallpurchasesincludemilkandscrewdrivers.Thesupportfortheruleismilkscrewdriversislow.Confidence

isameasureofhowoftentheconsequentistruewhentheantecedentistrue.E.g.,therulebreadmilkhasaconfidenceof80percentif80percentofthepurchasesthatincludebreadalsoincludemilk.FindingAssociationRulesWearegenerallyonlyinterestedinassociationruleswithreasonablyhighsupport(e.g.,supportof2%orgreater)Na?vealgorithmConsiderallpossiblesetsofrelevantitems.Foreachsetfinditssupport(i.e.,counthowmanytransactionspurchaseallitemsintheset).Largeitemsets:setswithsufficientlyhighsupportUselargeitemsetstogenerateassociationrules.FromitemsetAgeneratetheruleA-bforeachbA.Supportofrule=support(A).Confidenceofrule=support(A)/support(A-)FindingSupportDeterminesupportofitemsetsviaasinglepassonsetoftransactionsLargeitemsets:setswithahighcountattheendofthepassIfmemorynotenoughtoholdallcountsforallitemsetsusemultiplepasses,consideringonlysomeitemsetsineachpass.Optimization:Onceanitemsetiseliminatedbecauseitscount(support)istoosmallnoneofitssupersetsneedstobeconsidered.Theaprioritechniquetofindlargeitemsets:Pass1:countsupportofallsetswithjust1item.EliminatethoseitemswithlowsupportPassi:candidates:everysetofiitemssuchthatallitsi-1itemsubsetsarelargeCountsupportofallcandidatesStopiftherearenocandidatesOtherTypesofAssociationsBasicassociationruleshaveseverallimitationsDeviationsfromtheexpectedprobabilityaremoreinterestingE.g.,ifmanypeoplepurchasebread,andmanypeoplepurchasecereal,quiteafewwouldbeexpectedtopurchasebothWeareinterestedinpositiveaswellasnegativecorrelationsbetweensetsofitemsPositivecorrelation:co-occurrenceishigherthanpredictedNegativecorrelation:co-occurrenceislowerthanpredictedSequenceassociations/correlationsE.g.,wheneverbondsgoup,stockpricesgodownin2daysDeviationsfromtemporalpatternsE.g.,deviationfromasteadygrowthE.g.,salesofwinterweargodowninsummerNotsurprising,partofaknownpattern.LookfordeviationfromvaluepredictedusingpastpatternsClusteringClustering:Intuitively,findingclustersofpointsinthegivendatasuchthatsimilarpointslieinthesameclusterCanbeformalizedusingdistancemetricsinseveralwaysGrouppointsintoksets(foragivenk)suchthattheaveragedistanceofpointsfromthecentroidoftheirassignedgroupisminimizedCentroid:pointdefinedbytakingaverageofcoordinatesineachdimension.Anothermetric:minimizeaveragedistancebetweeneverypairofpointsinaclusterHasbeenstudiedextensivelyinstatistics,butonsmalldatasetsDataminingsystemsaimatclusteringtechniquesthatcanhandleverylargedatasetsE.g.,theBirchclusteringalgorithm(moreshortly)HierarchicalClusteringExamplefrombiologicalclassification(thewordclassificationheredoesnotmeanapredictionmechanism)chordata

mammaliareptilia

leopardshumanssnakescrocodilesOtherexamples:Internetdirectorysystems(e.g.,Yahoo,moreonthislater)AgglomerativeclusteringalgorithmsBuildsmallclusters,thenclustersmallclustersintobiggerclusters,andsoonDivisiveclusteringalgorithmsStartwithallitemsinasinglecluster,repeatedlyrefine(break)clustersintosmalleronesClusteringAlgorithmsClusteringalgorithmshavebeendesignedtohandleverylargedatasetsE.g.,theBirchalgorithmMainidea:useanin-memoryR-treetostorepointsthatarebeingclusteredInsertpointsoneatatimeintotheR-tree,merginganewpointwithanexistingclusterifislessthansomedistanceawayIftherearemoreleafnodesthanfitinmemory,mergeexistingclustersthatareclosetoeachotherAttheendoffirstpasswegetalargenumberofclustersattheleavesoftheR-treeMergeclusterstoreducethenumberofclustersCollaborativeFilteringGoal:predictwhatmovies/books/…apersonmaybeinterestedin,onthebasisofPastpreferencesofthepersonOtherpeoplewithsimilarpastpreferencesThepreferencesofsuchpeopleforanewmovie/book/…OneapproachbasedonrepeatedclusteringClusterpeopleonthebasisofpreferencesformoviesThenclustermoviesonthebasisofbeinglikedbythesam

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論