




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
MachineLearning09八月2023MachineLearning08八月20231Machinelearning,asabranchofartificialintelligence,isgeneraltermsofakindofanalyticalmethod.Itmainlyutilizescomputersimulateorrealizethelearnedbehaviorofhuman.09八月2023Machinelearning,asabranch209八月20231)Machinelearningjustlikeatruechampionwhichgohaughtily;
2)Patternrecognitioninprocessofdeclineanddieout;
3)Deeplearningisabrand-newandrapidlyrisingfield.theGooglesearchindexofthreeconceptsince200408八月20231)Machinelearningj309八月2023Theconstructedmachinelearningsystembasedoncomputermainlycontainstwocoreparts:representationandgeneralization.Thefirststepfordatalearningistorepresentthedata,i.e.detectthepatternofdata.Establishageneralizedmodelofdataspaceaccordingtoagroupofknowndatatopredictthenewdata.Thecoretargetofmachinelearningistogeneralizefromknownexperience.Generalizationmeansapowerofwhichthemachinelearningsystemtobelearnedforknowndatathatcouldpredictthenewdata.08八月2023Theconstructedmach4SupervisedlearningInputdatahaslabels.Thecommonkindoflearningalgorithmisclassification.Themodelhasbeentrainedviathecorrespondencebetweenfeatureandlabelofinputdata.Therefore,whensomeunknowndatawhichhasfeaturesbutnolabelinput,wecanpredictthelabelofunknowndataaccordingtotheexistingmodel.09八月2023Supervisedlearning08八月20235UnsupervisedlearningInputdatahasnolabels.Itrelatestoanotherlearningalgorithm,i.e.clustering.Thebasicdefinitionisacoursethatdividethegatherofphysicalorabstractobjectintomultipleclasswhichconsistofsimilarobjects.09八月2023Unsupervisedlearning08八月2026Iftheoutputeigenvectormarkscomefromalimitedsetthatconsistofclassornamevariable,thenthekindofmachinelearningbelongstoclassificationproblem.
Ifoutputmarkisacontinuousvariable,thenthekindofmachinelearningbelongstoregressionproblem.09八月2023Iftheoutputeigenvectormark7ClassificationstepFeatureextractionFeatureselectionModeltrainingClassificationandpredictionRawdataNewdata09八月2023ClassificationstepFeatureext8Featureselection(featurereduction)CurseofDimensionality:Usuallyrefertotheproblemthatconcernedaboutcomputationofvector.Withtheincreaseofdimension,calculatedamountwilljumpexponentially.Corticalfeaturesofdifferentbrainregionsexhibitvarianteffectduringtheclassificationprocessandmayexistsomeredundantfeature.Inparticularafterthemultimodalfusion,theincreaseoffeaturedimensionwillcause“curseofDimensionality”.09八月2023Featureselection(featurered9PrincipalComponentAnalysis,PCAPCAisthemostcommonlineardimensionreductionmethod.Itstargetismappingthedataofhighdimensiontolow-dimensionspaceviacertainlinearprojection,andexpectthevarianceofdatathatprojectthecorrespondingdimensionismaximum.Itcanusefewerdatadimensionmeanwhileretainthemajorcharacteristicofrawdata.09八月2023PrincipalComponentAnalysis,10Lineardiscriminantanalysis,LDAThebasicideaofLDAisprojection,mappingtheNdimensiondatatolow-dimensionspaceandseparatethebetween-groupsassoonaspossible.i.e.theoptimalseparabilityinthespace.Thebenchmarkisthenewsubspacehasmaximumbetweenclassdistanceandminimalinter-objectdistance.09八月2023Lineardiscriminantanalysis,11Independentcomponentanalysis,ICAThebasicideaofICAistoextracttheindependencesignalfromagroupofmixedobservedsignaloruseindependencesignaltorepresentothersignal.09八月2023Independentcomponentanalysis12Recursivefeatureeliminationalgorithm,RFERFEisagreedyalgorithmthatwipeoffinsignificancefeaturestepbysteptoselectthefeature.Firstly,cyclicorderingthefeatureaccordingtotheweightofsub-featureinclassificationandremovethefeaturewhichrankatterminalonebyone.Then,accordingtothefinalfeatureorderinglist,selectdifferentdimensionofseveralfeaturesubsetfronttoback.Assesstheclassificationeffectofdifferentfeaturesubsetandthengettheoptimalfeaturesubset.
09八月2023Recursivefeatureelimination13Classificationalgorithm
DecisiontreeDecisiontreeisatreestructure.Eachnonleafnodeexpressesthetestofafeaturepropertyandeachbranchexpressestheoutputoffeaturepropertyincertainrangeandeachleafnodestoresaclass.Thedecision-makingcourseofdecisiontreeisstartingfromrootnode,testingthecorrespondingfeaturepropertyofwaitingobjects,selectingtheoutputbranchaccordingtotheirvalues,untilreachingtheleafnodeandtaketheclassthatleafnodestoreasthedecisionresult.09八月2023ClassificationalgorithmDecis14NaiveBayes,NBNBclassificationalgorithmisaclassificationmethodinstatistics.Ituseprobabilitystatisticsknowledgeforclassification.Thisalgorithmcouldapplytolargedatabaseandithashighclassificationaccuracyandhighspeed.09八月2023NaiveBayes,NB08八月202315Artificialneuralnetwork,ANNANNisamathematicalmodelthatapplyakindofstructurewhichsimilarwithsynapseconnectionforinformationprocessing.Inthismodel,amassofnodeformanetwork,i.e.neuralnetwork,toreachthegoalofinformationprocessing.Neuralnetworkusuallyneedtotrain.Thecourseoftrainingisnetworklearning.Thetrainingchangethelinkweightofnetworknodeandmakeitpossessthefunctionofclassification.Thenetworkaftertrainingapplytorecognizeobject.09八月2023Artificialneuralnetwork,ANN16k-NearestNeighbors,kNNkNNalgorithmisakindofclassificationmethodbaseonlivingexample.Thismethodistofindthenearestktrainingsampleswithunknownsamplexandexaminethemostofksamplesbelongtowhichclass,thenxbelongstothatclass.kNNisalazylearningmethod.Itstoressamplesbutproceedclassificationuntilneedtoclassify.Ifsamplesetarerelativelycomplex,itmaybeleadtolargecomputationoverhead.Soitcannotapplytostronglyreal-timeoccasion.09八月2023k-NearestNeighbors,kNN08八月17supportvectormachine,SVMMappingthelinearlyinseparabledatainlow-dimensionspacetohigh-dimensionspaceandmakeitlinearlyseparable09八月2023supportvectormachine,SVM0818Crossvalidation,CVThebasicideaofCVisgroupingtherawdatainasense.Onepartistakenastrainset,theotherpartistakenasvalidationset.Primarily,theclassifieristrainedwithtrainset,andthenusevalidationsettotestthereceivedmodelbytraining.09八月2023Crossvalidation,CVThebasic19K-foldcross-validationIn
k-foldcross-validation,theoriginalsampleisrandomlypartitionedinto
k
equalsizedsubsamples.Ofthe
k
subsamples,asinglesubsampleisretainedasthevalidationdatafortestingthemodel,andtheremaining
k
?
1subsamplesareusedastrainingdata.Thecross-validationprocessisthenrepeated
k
times(the
folds),witheachofthe
k
subsamplesusedexactlyonceasthevalidationdata.The
k
resultsfromthefoldscanthenbeaveragedtoproduceasingleestimation.Theadvantageofthismethodoverrepeatedrandomsub-samplingisthatallobservationsareusedforbothtrainingandvalidation,andeachobservationisusedforvalidationexactlyonce.10-foldcross-validationiscommonlyused.09八月2023K-foldcross-validation08八月220Leave-one-outcross-validation,LOOCVWhen
k
=
n
(thenumberofobservations),the
k-foldcross-validationisexactlytheleave-one-outcross-validation.09八月2023Leave-one-outcross-validation21confusionmatrixTP——goldstandardandtestaffirmsufferfromcertainillness;TN——goldstandardandtestaffirmnotsufferfromcertainillness;FP——go
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 四年級下冊期末押題作文《-的我》
- 開源軟件供應(yīng)鏈管理與優(yōu)化
- 雙激光加工碳化鎢陶瓷顆粒在錫鎳青銅合金中的應(yīng)用研究
- 高校命運共同體構(gòu)建與辦學(xué)資源共享機制研究
- 基于數(shù)據(jù)驅(qū)動的鈣鈦礦材料性能預(yù)測智能計算框架構(gòu)建
- 邊界管理:掌握適可而止的藝術(shù)與策略
- 燃氣安裝工程質(zhì)量課件
- 紡織纖維檢驗員崗位面試問題及答案
- 熊貓兒童課件
- 陶瓷裝飾材料創(chuàng)新研究-洞察闡釋
- 診所托管合同協(xié)議
- 質(zhì)量檢驗(測)技術(shù)服務(wù)企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略研究報告
- 信息必刷卷04(廣東省卷專用)2025年中考數(shù)學(xué)(解析版)
- 餐飲服務(wù)與管理課件 菜單的設(shè)計與制作
- 核電進廠考試題及答案
- 公司員工飲水管理制度
- 山東師范大學(xué)《大學(xué)英語本科(專升本)》期末考試復(fù)習(xí)題及參考答案
- 聲譽風(fēng)險培訓(xùn)
- 《SketchUp草圖大師教學(xué)》課件
- 職業(yè)技能培訓(xùn):保健按摩師
- 第二十章手術(shù)減肥及體形塑造美容手術(shù)美容外科學(xué)概論講解
評論
0/150
提交評論