學長只能幫你們到這里了ie hws_第1頁
學長只能幫你們到這里了ie hws_第2頁
學長只能幫你們到這里了ie hws_第3頁
學長只能幫你們到這里了ie hws_第4頁
學長只能幫你們到這里了ie hws_第5頁
已閱讀5頁,還剩4頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

QUESTION1.Therearetwogoods,goodAandgoodB,thatareproduced+bothcapital(K)andlabor TheproductionfunctionsarefA:+

→R++fB:R2→R+.WritedownthecorrespondingproductionsetY+Answer.TheproductionsetY={(?K,?L,qA,qB)where:qA≤fA(KA,LA),qB≤fB(KB,LB),KA+KB≤K,LA+LB≤QUESTION2.ConsidertheCES(constanasticityofsubstitution)production ρtionf(x1,x2)=(x1+x2)ρ,whereρ≤1isaDoesthisproductionfunctionexhibitanytypeofreturnstoscale?Ifyes,whatComputetheTRS(technicalrateofsubstitution)andtheelasticityofsubstitutionforthisproductionfunction.ShowForρ=1weobtainthelinearproductionForρ=0weobtaintheCobb-DouglasproductionForρ=?∞weobtaintheLeontiefproductionDerivetheconditionalfactordemandx?(w,q)andcostfunctionc(w,Derivethe(unconditional)factordemandx?(p,w),outputsupplyq?(p,w)andprofitfunctionπ(p,w).[Becarefulhere.]Answer.Part(1).Itiseasytoverifythattheproductionfunctionischaracterizedbyconstantreturnstoscale(CTRS):foranyα>0wehave:f(αx1,αx2)=αf(x1,x2).Part(2).Thetechnicalrateofsubstitutionbetweeninputs1and2isdefined?fρ =? . Computingthepartialderivativesoffwe =(x?fxρ)1?1(x)ρ?1and

=(xρ+xρ)1?1(x)ρ?1,

2

2

(x1—x—2dTTheelasticityofsubstitutionbetweeninputs1and2isdefinedas:σ12=x1/x2dTtheexpressionforTRS12wefoundabove,aftersomealgebra,weobtain:σ12=?1Part(3a).Ifρ=1,weobtainf(x1,x2)=x1+x2,ie.theproductionfunctionisPart(3b).Ifρ=0,wecancomputetheproductionfunctionas 1ρ ρ

log(x1+x2

ρ(x1

lim(x1+x2) lim

=limex1

=e1(logx1+logx2)= 1x) 1)2(2 [AnotherwaytoanswerthisquestionistolookattheTRSforρ=0:TRS12ρ=0=x2whichcorrespondstoaCobb-Douglasproductionfunction. ρPart(3c).Ifρ=?∞,wewanttoshowthatlimρ→?∞(x1+x2)ρ=min{x1,Supposethatx1≤x2andletρ<0. 1≥0andx2≥0wehave:xρ+xρ≥ ρ

andsinceρ<0weobtain(x1+x2)ρ≤x1.Ontheotherhandx1≤x2andρ<0

ρ x1+x2≤x1+x1=2x1,or(x1+x2)ρ≥2ρx1.Thereforewe ρ2ρx1≤(x1+x2)ρ≤→ → ,weobtainlimρ→?∞(x1+x2)ρ=x1.Theothercaseof x1is[Therearemanyotherwaystoanswerthisquestion.Forexample,youcouldlook0,ifx2<theTRSwhenρ=?∞:TRS12|ρ=?∞=?∞,ifx2>x10,ifx2<totheLeontieftypeproductionPart(4).Thecostminimizationproblemc(w,q)=minw1x1+ ρs.t.(x1+x2)ρ=Thecostproblemcanbere-writtenc(w,q)=minw1x1+s.t.xρ+xρ= UsingthestandardLagrangianmethod,youshouldobtaintheconditionalfactordemand ρ 1—x?(w,q)=(wρ?1+wρ?1

ρwρ?1 ρ 1—x?(w,q)=(wρ?1+wρ?1

ρwρ?12andthecost

ρ

c(w,q)=(wρ?1+wρ?1)ρ NotethatsincetheproductionfunctionhasCRTS,thecostfunctionislinearinq.(seeLemma4inthe2Part(5).SincetheproductionfunctionfeaturesCRTS,theprofitsareeither0+∞.Toseethat,writethe izationproblem ρ

π(p,w)=maxpq?c(w,q)=(p?(wρ?1+wρ?1

ρThesolutiontothisproblemq(p,q(p,w)??

0,ifp≤(0,ifp≤(wρ?1+wρ?1 ρ+∞,ifp>(wρ?1+wρ?1)sotheprofitfunctionπ(π(p,w)

0,ifp≤(0,ifp≤(wρ?1+wρ?1 ρ12+∞,ifp>(wρ?1+wρ?1)12QUESTION3.Supposethatafirmhastwonts,withcostfunctionsc1()andc2().Computethecostofproducingsometyqif:c1(q1)=3(q1)2andc2(q2)=c1(q1)=4√q1andc2(q2)=Answer.Theproblemofthefirmistominimizethetotalcost:c1(q1)+c2(q2)subjecttoconstraintq1+q2=q.Part1.Forthisfunctionalformofthetwocostfunctions,theproblemc(q)=

3(q1)2+s.t.q1+q2=4Solvingthisproblem,eitherusingtheLagrangian,orsubstitutingforq2fromthecon-straintintotheobjectivefunction,youshouldobtainc(q)=3q2.4Part2.Forthesecondcase,thefirmc(q)=

4√q1+s.t.q1+q2=Youhavetobecarefulherebecausetheobjectivefunction4√q1+2√q2isconcave.Takingfirstorderconditionswillyieldaum,notaminimum.Inthiscaseitisenoughtocheckthetwocornercases:(q1=0,q2=q)and(q1=q,q2=0),andchoosetheonegiveslowestcost.Asitturnsout,thesolutionis(q1=0,q2=q),whichimpliesthatthecostfunctionisc(q)=2√q.QUESTION4.Suppo ?isasetofinputsthat izesprofitswheninputpricesarew.Letq?=f(x?)betheoutputsupply.Showthatx?minimizesthecostof3outputq?.Inotherwords,anycombinationofinputsthat productioncost.Answer.Letx?andq?solvethe ization max w s.t.q≤fbutsupposethatx?doesnotsolvethecostminimization·minw·xs.t.f(x)= whenq=q?.Thatis,thereexistsanothercombinationofinputsx0suchthatf(x0)=q?andwx0<wx?.Computingtheprofitsassociatedwithx0,weobtainpf(x0)wx0=pq?wx0>pq?wx?.Ofcourse,thiscontradictsthefactthe(x?, QUESTION5.Aprice-takingfirmproducesoutputqfrominputsx1andx2accordingtoadifferentiableconcaveproductionfunctionf(x1,x2).Thepriceofitsoutputisp>0,andthepricesofitsinputsare(w1,w2)0.However,therearetwounusualthingsaboutthisfirm.First,ratherthan izingprofit,thefirm managerwantsherfirmtohavebiggerdollarsalesthananyother).Second,thefirmiscashconstrained.Inparticular,ithasonlyCdollarsonhandbeforeproductionand,asaresult,itstotalexpenditureoninputscannotexceedC.Supposeoneofyoureconometricianfriendslsyouthatshehasusedrepeatedobser-vationsofthefirm’srevenuesundervariousoutputprices,inputprices,andlevelsofthefinancialconstraintandhasdeterminedthatthefirm’srevenuelevelRcanbeexpressedasthefollowingfunctionofthevariables(p,w1,w2,C):R(p,w1,w2,C)=p[logC?αlogw1?(1?α)logw2]whereαisascalarwhosevalueshelsyou.Whatisthefirm’suseofinputsx1andx2whenpricesare(p,w1,w2)andithasdollarsofcashonWhatistheminimumcostandthecorrespondinginputsdemandifthefirmwantstoproducequnitsofoutput?Whatisfirm’sproductionAnswer.(1)Theproblemofthefirm

pf(x1,s.t.w1x1+w2x2≤4Thisissimilartotheutilityizationproblemfromconsumertheorywithf()corre-spondingtotheutilityu()andw1x1+w2x2≤Ccorrespondingtothebudgetconstraint.SincewearegiventhevaluefunctionR(p,w1,w2,C),whichcorrespondstotheindirectutility,wecanuseRoy’sidentitytocomputetheinputdemand: 1x(p,w,w)=??w1=??αw1=

1 1wx(p,w,w)=??w2=??(1?α)w

=(1? 1 ToobtaintheminimumcostwesimplyinverttherevenuefunctionR()andFinallywecanrecovertheproductionfunctionbyf(x1,x2)=

R(p,w1,w2,s.t.w1x1+w2x2=UsingthestandardLagrangianmethod,weobtainthewell-knownCobb-Douglastech-nologyf(x1,x2)=(x1)α(x2)1?α.51.AB,(K)(L)為fA:R2+→R+和fB:R2+→R+。寫下相應的生產(chǎn)集Y。Y={(.K,.L,qA,qB)其中:qA≤fA(KA,LA),qB≤fB(KB,LB),KA+KB≤K,LA+LB≤o2.CES(恒定替代彈性)生產(chǎn)函數(shù)f(x1,x2)=(x1ρ+x2ρ)1,其中ρ≤1計算該生產(chǎn)函數(shù)的TRS(技術替代率)ρ1當ρ=0時,我們得到生產(chǎn)函數(shù)當ρ=.∞時,我們得到Leontief生產(chǎn)函數(shù)。導出條件因子需求x.(w,q)和成本函數(shù)c(w,q)要。]回答。第1部分)。很容易驗證生產(chǎn)函數(shù)的特點是規(guī)模不變(CTRS):對于任何α>0,我們有:f(αx1,αx2)=αf(x1,x2)2)12.x1.fTRS12=..f(x1,x2)。計算f的偏導數(shù),我們有:.x1=(x1x2ρ.1.fρ.1(x2)ρ.1x2)1(x1)ρ.1且.x2=(x1+x2)1x1TRS12=d(x1/x2)投入1和投入2之間的替代彈性定義為:σ12=dTRS12。使用TTRS12:σ12.11ρ3b)部分。如果ρ=0,我們可以計算生產(chǎn)函數(shù)如下log(xρ+xρ)1ρ12ρρ(xlog(x1)+(x2)ρρρ1lim(x1+x2)=lime=limexρ→0ρ→01.e=(x1)2(x2)2回答這個問題的另法是查看ρ=0的TRS:TRS12|ρ=0=.x2它對應于生產(chǎn)函數(shù)。參見Varian(1992),第19-20頁。]ρ3c)ρlimρ→.Infini(xρ1xρ2)min{x1,x2}。ρρx1x2ρ<0x10x20,我們有:x1x2x1,ρ由于ρ<0,我們得到(xρ1+xρ2)≤x1。另一方面,x1≤x2且ρ<0ρρρρρρρx1+x≤x1+x=2x1,或(x1+x≥2ρx1)21ρ1ρx1≤(xρ1+xρ2)1≤ρ取ρ→.∞,我們得到limρ→.∞(x1ρ+x2ρ)1=x1。x2≤x1還有很多其他方法可以回答這個問題。例如,您可以查看是否x2當ρ=.∞時的TRS:TRS12|ρ=.∞0,x2<x1,Leontief(4)c(w,q)minw1x1+w2x2ρs.t.(x1ρx2ρ)1qc(w,q)minw1x1w2x2英石。x1ρ+x2ρ使用標準日方法,您應該獲得條件因子需求為ρ1。ρ.1ρ.1)。1ρ.1x(w,q)=(w+wρ1.ρ1。ρ.1ρ.1)。x(w,q)=(w+wρ2.ρ.1ρ.1c(w,q)=(w1+w2)q請注意,由于生產(chǎn)函數(shù)具有CRTS,因此成本函數(shù)對于輸出q(4)+∞pro.tρρ.1ρ.1ρ.1π(p,w)pqc(w,q)=(p(w1w2))qq≥0ρ.10,如果p≤(w+wρρρ.1q.(p,w)=12ρρ1p>(w1w2所以pro.t函數(shù)是ρ.1ρ.10,如果p≤(w1+w2ρρρ.1ρ.1π(p,w)=ρ.1如果p>(w1+w2問題3.假設.rm有兩個工廠,成本函數(shù)為c1()和c2()。計算生產(chǎn)一定數(shù)量q:c1(q1)=3(q1)2且c2(q2)=(q2)2c1(q1)=4q1且c2(q2)=2q2.rm:c1(q1)+c2(q2)q1q2q。第1部分。對于兩個成本函數(shù)的函數(shù)形式,問題是:c(q)=最小值3(q1)2英石。q1+q2=q解決這個問題,無論是使用日函數(shù),還是將約束中的q2替換到目標函數(shù)中,您應該得到c(q)=43q2。第2部分.對于第二種情況,.rm求解c(q)=min4q1+2英石。q1+q2=q這里必須,因為目標函數(shù)4q1+2q2是凹的。采用.rst訂單條件將產(chǎn)生最大值,而不是最小值。在這種情況下,檢查兩個情況就足夠了:(q1=0,q2=q)和(q1q,q20),(q1=0,q2q),這意味著成本函數(shù)為c(q)=2q。問題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論