版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
初中數(shù)學(xué)教學(xué)同步課件前言——讀的方法同學(xué)們往往不善于讀數(shù)學(xué)書,在讀的過程中,易沿用死記硬背的方法。那么如何有效地讀數(shù)學(xué)書呢?平時(shí)應(yīng)做到:一是粗讀。先粗略瀏覽教材的枝干,并能粗略掌握本章節(jié)知識的概貌,重、難點(diǎn);二是細(xì)讀。對重要的概念、性質(zhì)、判定、公式、法則、思想方法等反復(fù)閱讀、體會、思考,領(lǐng)會其實(shí)質(zhì)及其因果關(guān)系,并在不理解的地方作上記號(以便求教);三是研讀。要研究知識間的內(nèi)在聯(lián)系,研討書本知識安排意圖,并對知識進(jìn)行分析、歸納、總結(jié),以形成知識體系,完善認(rèn)知結(jié)構(gòu)。讀書,先求讀懂,再求讀透,使得自學(xué)能力和實(shí)際應(yīng)用能力得到很好的訓(xùn)練。“聽”是直接用感官去接受知識,而初中同學(xué)往往對課程增多、課堂學(xué)習(xí)量加大不適應(yīng),顧此失彼,精力分散,使聽課效果下降。因此應(yīng)在聽課程時(shí)注意做到:(1)聽每節(jié)課的學(xué)習(xí)要求;(2)聽知識的引入和形成過程;(3)聽懂教學(xué)中的重、難點(diǎn)(尤其是預(yù)習(xí)中不理解的或有疑問的知識點(diǎn));(4)聽例題關(guān)鍵部分的提示及應(yīng)用的數(shù)學(xué)思想方法;(5)做好課后小結(jié)。前言——聽的方法“思”指同學(xué)的思維。數(shù)學(xué)是思維的體操,學(xué)習(xí)離不開思維,數(shù)學(xué)更離不開思維活動,善于思考則學(xué)得活,效率高;不善于思考則學(xué)得死,效果差??梢?科學(xué)的思維方法是掌握好知識的前提。七年級學(xué)生的思維往往還停留在小學(xué)的思維中,思維狹窄。因此在學(xué)習(xí)中要做到:(1)敢于思考、勤于思考、隨讀隨思、隨聽隨思。在看書、聽講、練習(xí)時(shí)要多思考;(2)善于思考。會抓住問題的關(guān)鍵、知識的重點(diǎn)進(jìn)行思考;(3)反思。要善于從回顧解題策略、方法的優(yōu)劣進(jìn)行分析、歸納、總結(jié)。前言——思考的方法孔子曰:“敏而好學(xué),不恥不問。”愛因斯坦說過:“提出問題比解決問題更重要。”問能解惑,問能知新,任何學(xué)科的學(xué)習(xí)無不是從問題開始的。因此,同學(xué)在平時(shí)學(xué)習(xí)中應(yīng)掌握問問題的一些方法,主要有:(1)追問法。即在某個(gè)問題得到回答后,順其思路對問題緊追不舍,刨根到底繼續(xù)發(fā)問;(2)反問法。根據(jù)教材和教師所講的內(nèi)容,從相反的方向把問題提出來;(3)類比提問法。據(jù)某些相似的概念、定理、性質(zhì)等的相互關(guān)系,通過比較和類推提出問題;(4)聯(lián)系實(shí)際提問法。結(jié)合某些知識點(diǎn),通過對實(shí)際生活中一些現(xiàn)象的觀察和分析提出問題。此外,在提問時(shí)不僅要問其然,還要問其所以然。前言——問的方法很大一部分學(xué)生認(rèn)為數(shù)學(xué)沒有筆記可記,有記筆記的學(xué)生也是記得不夠合理。通常是教師在黑板上所寫的都記下來,用“記”代替“聽”和“思”。有的筆記雖然記得很全,但收效甚微。因此,學(xué)生作筆記時(shí)應(yīng)做到以下幾點(diǎn):(1)在“聽”,“思”中有選擇地記錄;(2)記學(xué)習(xí)內(nèi)容的要點(diǎn),記自己有疑問的疑點(diǎn),記書中沒有的知識及教師補(bǔ)充的知識點(diǎn);(3)記解題思路、思想方法;(4)記課堂小結(jié)。明確筆記是為補(bǔ)充“聽”“思”的不足,是為最后復(fù)習(xí)準(zhǔn)備的,好的筆記能使復(fù)習(xí)達(dá)到事倍功半的效果。正確的學(xué)習(xí)態(tài)度和科學(xué)的學(xué)習(xí)方法是學(xué)好數(shù)學(xué)的兩大基石。這兩大基石的形成又離不開平時(shí)的數(shù)學(xué)學(xué)習(xí)實(shí)踐。所以暑期期間每天給自己一些時(shí)間學(xué)習(xí)數(shù)學(xué)是很有必要的。前言——記筆記的方法21.2解一元二次方程21.2.4一元二次方程的根與系數(shù)的關(guān)系人教版數(shù)學(xué)九年級上冊1.一元二次方程的求根公式是什么?【想一想】方程的兩根x1和x2與系數(shù)a、b、c還有其他關(guān)系嗎?2.如何用判別式b2-4ac來判斷一元二次方程根的情況?對一元二次方程:ax2+bx+c=0(a≠0)b2-4ac>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根.b2-4ac=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根.b2-4ac<0時(shí),方程無實(shí)數(shù)根.導(dǎo)入新知素養(yǎng)目標(biāo)1.探索一元二次方程的根與系數(shù)的關(guān)系.2.不解方程利用一元二次方程的根與系數(shù)的關(guān)系解決問題.3.讓學(xué)生體會從特殊到一般的科學(xué)探究過程.填表,觀察、猜想
方程
x1,
x2
x1+
x2
x1.x2
x2-2x+1=0x2+3x-10=0x2+5x+4=0【思考】你發(fā)現(xiàn)什么規(guī)律?①用語言敘述你發(fā)現(xiàn)的規(guī)律;②
x2+px+q=0的兩根x1,,x2用式子表示你發(fā)現(xiàn)的規(guī)律.
根與系數(shù)的關(guān)系探究新知知識點(diǎn)11,1212,-5-3-10-1,-4-54(1)若一元二次方程的兩根為x1,x2,則有x-x1=0,且x-x2=0,那么方程(x-x1)(x-x2)=0(x1,x2為已知數(shù))的兩根是什么?將方程化為x2+px+q=0的形式,你能看出x1,x2與p,q之間的關(guān)系嗎?(x-x1)(x-x2)=0.x2-(x1+x2)x+x1·x2=0,x2+px+q=0,x1+x2=-p,x1·x2=q.探究新知【猜一猜】如果關(guān)于x的方程的兩根是x1
,x2
,則:如果方程二次項(xiàng)系數(shù)不為1呢?x1+x2=-p,x1·x2=q探究新知方程x1,
x2
x1+
x2
x1.x2
2x2-3x-2=03x2-4x+1=0問題:上面發(fā)現(xiàn)的結(jié)論在這里成立嗎?請完善規(guī)律.①用語言敘述發(fā)現(xiàn)的規(guī)律;②
ax2+bx+c=0的兩根x1,,x2用式子表示你發(fā)現(xiàn)的規(guī)律.探究新知
-1一元二次方程的根與系數(shù)的關(guān)系:如果方程ax2+bx+c=0(a≠0)的兩個(gè)根是x1,x2,那么x1+x2=,x1x2=(韋達(dá)定理)【注意】能用根與系數(shù)的關(guān)系的前提條件為b2-4ac≥0常數(shù)項(xiàng)探究新知一次項(xiàng)系數(shù)二次項(xiàng)系數(shù)注意系數(shù)符號。學(xué)生活動:請同學(xué)用求根公式證明.一元二次方程的根與系數(shù)的關(guān)系的應(yīng)用例1
利用根與系數(shù)的關(guān)系,求下列方程的兩根之和、兩根之積.
(1)x2+7x+6=0;解:這里a=1,b=7,c=6.Δ=b2-4ac=72–4×1×6=25>0.∴方程有兩個(gè)實(shí)數(shù)根.設(shè)方程的兩個(gè)實(shí)數(shù)根是x1,x2,那么x1+x2=-7,x1x2=6.素養(yǎng)考點(diǎn)1探究新知(2)2x2-3x-2=0.解:這里
a=2,b=-3,c=-2.
Δ=b2
-4ac=(-3)2–4×2×(-2)=25>0,
∴方程有兩個(gè)實(shí)數(shù)根.
設(shè)方程的兩個(gè)實(shí)數(shù)根是
x1,x2,那么
x1+x2=,x1x2=-1.探究新知不解方程,求方程兩根的和與兩根的積:
①x2+3x-1=0②2x2-4x+1=0解:①②原方程可化為:二次項(xiàng)不是1,可以先把它化為11.鞏固練習(xí)例2
已知方程5x2+kx-6=0的一個(gè)根是2,求它的另一個(gè)根及k的值.解:設(shè)方程的兩個(gè)根分別是x1、x2,其中x1=2
.
所以:x1·x2=2x2=
即:x2=
由于x1+x2=2+=
得:k=-7.答:方程的另一個(gè)根是
,k=-7.利用根與系數(shù)的關(guān)系求字母的值或取值范圍素養(yǎng)考點(diǎn)2探究新知想一想,還有沒有別的做法?2.已知方程x2-(k+1)x+3k=0的一個(gè)根是2,求它的另一個(gè)根及k的值.解:設(shè)方程的另一個(gè)根為x1.把x=2代入方程,得4-2(k+1)+3k=0解這方程,得k=-2由根與系數(shù)關(guān)系,得x1●2=3k
即2x1
=-6∴x1
=-3答:方程的另一個(gè)根是-3,k的值是-2.鞏固練習(xí)例3
不解方程,求方程2x2+3x-1=0的兩根的平方和、倒數(shù)和.解:根據(jù)根與系數(shù)的關(guān)系可知:
利用根與系數(shù)的關(guān)系求兩根的平方和、倒數(shù)和素養(yǎng)考點(diǎn)3探究新知(1)x1+x2=
,(2)x1·x2=
,(3)
,
(4)
.411214鞏固練習(xí)3.設(shè)x1,x2為方程x2-4x+1=0的兩個(gè)根,則:
例4
設(shè)x1,x2是方程x2-2(k-1)x+k2=0的兩個(gè)實(shí)數(shù)根,且x12+x22=4,求k的值.解:由方程有兩個(gè)實(shí)數(shù)根,得Δ=4(k-1)2-4k2≥0
即-8k+4≥0.
由根與系數(shù)的關(guān)系得x1+x2=2(k-1),x1x2=k2.∴x12+x22=(x1+x2)2-2x1x2=4(k-1)2-2k2=2k2-8k+4.由x12+x22=4,得2k2-8k+4=4,
解得
k1=0,k2=4.經(jīng)檢驗(yàn),k2=4不合題意,舍去.根與系數(shù)關(guān)系的綜合題目素養(yǎng)考點(diǎn)4探究新知
歸納總結(jié)探究新知
求與方程的根有關(guān)的代數(shù)式的值時(shí),一般先將所求的代數(shù)式化成含兩根之和,兩根之積的形式,再整體代入.解:設(shè)方程兩根分別為x1,x2(x1>x2),則x1-x2=1∵(x2-x1)2=(x1+x2)2-4x1x2由根與系數(shù)的關(guān)系得x1+x2=,x1x2=解得k1=9,k2=-3當(dāng)k=9或-3時(shí),由于△>0,∴k的值為9或-3.∴()2-4×
=1鞏固練習(xí)4.當(dāng)k為何值時(shí),方程2x2-(k+1)x+k+3=0的兩根差為1.
一元二次方程x2﹣2x=0的兩根分別為x1和x2,則x1x2為(
)
A.﹣2
B.1
C.2
D.0鞏固練習(xí)連接中考D1.如果-1是方程2x2-x+m=0的一個(gè)根,則另一個(gè)根是___,m=____.2.已知一元二次方程x2+px+q=0的兩根分別為-2和1,則:p=
,q=
.1-2-3課堂檢測基礎(chǔ)鞏固題3.已知方程3x2-19x+m=0的一個(gè)根是1,求它的另一個(gè)根及m的值.解:將x=1代入方程中:3
-19+m=0.
解得
m=16,設(shè)另一個(gè)根為x1,則:
1×x1=∴x1=課堂檢測基礎(chǔ)鞏固題4.已知x1,x2是方程2x2+2kx+k-1=0的兩個(gè)根,且(x1+1)(x2+1)=4;(1)求k的值;(2)求(x1-x2)2的值.解:(1)根據(jù)根與系數(shù)的關(guān)系
所以(x1+1)(x2+1)=x1x2+(x1+x2)+1=
解得:k=-7;
(2)因?yàn)閗=-7,所以
則:課堂檢測基礎(chǔ)鞏固題設(shè)x1,x2是方程3x2+4x–3=0的兩個(gè)根.利用根系數(shù)之間的關(guān)系,求下列各式的值.
(1)(x1+1)(x2+1);(2)解:根據(jù)根與系數(shù)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版對講門品牌授權(quán)與市場推廣合同2篇
- 教培機(jī)構(gòu)2025年度27份合同協(xié)議(教育版權(quán)保護(hù))2篇
- 二零二五版住宅小區(qū)配套設(shè)施使用權(quán)轉(zhuǎn)讓合同3篇
- 二零二五年度采砂廠承包生態(tài)補(bǔ)償金支付合同范本3篇
- 2024蔬菜種植項(xiàng)目承包合同協(xié)議2篇
- 二零二五版工程招投標(biāo)與合同管理專家指導(dǎo)與案例分析3篇
- 工業(yè)廠房結(jié)構(gòu)檢測與2025年度注漿加固合同3篇
- 展會安全保障合同(2篇)
- 二零二五年度餐飲業(yè)食品安全標(biāo)準(zhǔn)制定合同3篇
- 二零二五版鋼結(jié)構(gòu)工程專用材料采購合同范本5篇
- 小學(xué)四年級數(shù)學(xué)知識點(diǎn)總結(jié)(必備8篇)
- GB/T 893-2017孔用彈性擋圈
- GB/T 11072-1989銻化銦多晶、單晶及切割片
- GB 15831-2006鋼管腳手架扣件
- 醫(yī)學(xué)會自律規(guī)范
- 商務(wù)溝通第二版第4章書面溝通
- 950項(xiàng)機(jī)電安裝施工工藝標(biāo)準(zhǔn)合集(含管線套管、支吊架、風(fēng)口安裝)
- 微生物學(xué)與免疫學(xué)-11免疫分子課件
- 《動物遺傳育種學(xué)》動物醫(yī)學(xué)全套教學(xué)課件
- 弱電工程自檢報(bào)告
- 民法案例分析教程(第五版)完整版課件全套ppt教學(xué)教程最全電子教案
評論
0/150
提交評論