高中數(shù)學(xué)二輪復(fù)習(xí)專題六橢圓雙曲線拋物線(理數(shù))課件(全國(guó)通用)_第1頁(yè)
高中數(shù)學(xué)二輪復(fù)習(xí)專題六橢圓雙曲線拋物線(理數(shù))課件(全國(guó)通用)_第2頁(yè)
高中數(shù)學(xué)二輪復(fù)習(xí)專題六橢圓雙曲線拋物線(理數(shù))課件(全國(guó)通用)_第3頁(yè)
高中數(shù)學(xué)二輪復(fù)習(xí)專題六橢圓雙曲線拋物線(理數(shù))課件(全國(guó)通用)_第4頁(yè)
高中數(shù)學(xué)二輪復(fù)習(xí)專題六橢圓雙曲線拋物線(理數(shù))課件(全國(guó)通用)_第5頁(yè)
已閱讀5頁(yè),還剩25頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

橢圓、雙曲線、拋物線-2--3-例1設(shè)P是橢圓

上一點(diǎn),M,N分別是兩圓:(x+2)2+y2=1和(x-2)2+y2=1上的點(diǎn),則|PM|+|PN|的最小值、最大值分別為(

)A.4,8 B.2,6 C.6,8 D.8,12-4-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三命題熱點(diǎn)四圓錐曲線的定義的應(yīng)用【思考】

什么問(wèn)題可考慮應(yīng)用圓錐曲線的定義?求圓錐曲線標(biāo)準(zhǔn)方程的基本思路是什么?答案解析解析關(guān)閉答案解析關(guān)閉-5-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三命題熱點(diǎn)四題后反思1.涉及橢圓(或雙曲線)兩焦點(diǎn)間的距離或焦點(diǎn)弦的問(wèn)題以及到拋物線焦點(diǎn)(或準(zhǔn)線)的距離問(wèn)題,可優(yōu)先考慮圓錐曲線的定義.2.求圓錐曲線的標(biāo)準(zhǔn)方程時(shí)“先定型,后計(jì)算”,即先確定是何種曲線,焦點(diǎn)在哪個(gè)坐標(biāo)軸上,再利用條件求a,b,p的值.-6-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三命題熱點(diǎn)四對(duì)點(diǎn)訓(xùn)練1設(shè)拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)M在拋物線C上,|MF|=2.若以MF為直徑的圓經(jīng)過(guò)點(diǎn)(0,1),則拋物線C的焦點(diǎn)到準(zhǔn)線的距離為(

)A.8

B.4或8

C.2

D.2或4C可知圓的半徑也為1,所以該圓與y軸相切于點(diǎn)(0,1),故圓心縱坐標(biāo)為1.則M點(diǎn)縱坐標(biāo)為2,-7-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三命題熱點(diǎn)四所以C的焦點(diǎn)到準(zhǔn)線的距離為2.-8-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三命題熱點(diǎn)四求圓錐曲線的離心率【思考】

求圓錐曲線離心率的基本思路是什么?右焦點(diǎn),O為坐標(biāo)原點(diǎn),以O(shè)F為直徑的圓與圓x2+y2=a2交于P,Q兩點(diǎn).若|PQ|=|OF|,則C的離心率為(

)A-9-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三命題熱點(diǎn)四解析:如圖,設(shè)PQ與x軸交于點(diǎn)A,由對(duì)稱性可知PQ⊥x軸.∵|PQ|=|OF|=c,-10-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三命題熱點(diǎn)四題后反思解決橢圓和雙曲線的離心率的求值或取值范圍問(wèn)題,其關(guān)鍵就是先確立一個(gè)關(guān)于a,b,c(a,b,c均為正數(shù))的方程或不等式,再根據(jù)a,b,c的關(guān)系消掉b得到a,c的關(guān)系式.建立關(guān)于a,b,c的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點(diǎn)的坐標(biāo)的范圍等.-11-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三命題熱點(diǎn)四A1,A2,且以線段A1A2為直徑的圓與直線bx-ay+2ab=0相切,則C的離心率為(

)答案解析解析關(guān)閉答案解析關(guān)閉-12-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三命題熱點(diǎn)四求軌跡方程【思考】

求軌跡方程的基本策略是什么?(1)求點(diǎn)P的軌跡方程;

-13-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三命題熱點(diǎn)四(2)由題意知點(diǎn)F(-1,0).設(shè)點(diǎn)Q(-3,t),P(m,n),又過(guò)點(diǎn)P存在唯一直線垂直于OQ,所以過(guò)點(diǎn)P且垂直于OQ的直線l過(guò)C的左焦點(diǎn)F.-14-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三命題熱點(diǎn)四題后反思1.求軌跡方程時(shí),先看軌跡的形狀能否預(yù)知,若能預(yù)先知道軌跡為何種圓錐曲線,則可考慮用定義法求解或用待定系數(shù)法求解;否則利用直接法或代入法.2.討論軌跡方程的解與軌跡上的點(diǎn)是否對(duì)應(yīng),要注意字母的取值范圍.-15-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三命題熱點(diǎn)四對(duì)點(diǎn)訓(xùn)練3如圖,拋物線C1:x2=4y,C2:x2=-2py(p>0).點(diǎn)M(x0,y0)在拋物線C2上,過(guò)點(diǎn)M作C1的切線,切點(diǎn)為A,B(M為原點(diǎn)O時(shí),A,B重合于O).當(dāng)x0=1-時(shí),切線MA的斜率為-.(1)求p的值;(2)當(dāng)點(diǎn)M在C2上運(yùn)動(dòng)時(shí),求線段AB的中點(diǎn)N的軌跡方程(當(dāng)A,B重合于點(diǎn)O時(shí),中點(diǎn)為O).-16-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三命題熱點(diǎn)四-17-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三命題熱點(diǎn)四-18-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三命題熱點(diǎn)四圓錐曲線與圓相結(jié)合的問(wèn)題【思考】

圓錐曲線與圓相結(jié)合的題目經(jīng)常用到圓的哪些性質(zhì)?例4已知拋物線C:y2=2x,過(guò)點(diǎn)(2,0)的直線l交C于A,B兩點(diǎn),圓M是以線段AB為直徑的圓.(1)證明:坐標(biāo)原點(diǎn)O在圓M上;(2)設(shè)圓M過(guò)點(diǎn)P(4,-2),求直線l與圓M的方程.-19-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三命題熱點(diǎn)四-20-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三命題熱點(diǎn)四故(x1-4)(x2-4)+(y1+2)(y2+2)=0,即x1x2-4(x1+x2)+y1y2+2(y1+y2)+20=0.由(1)可得y1y2=-4,x1x2=4.-21-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三命題熱點(diǎn)四題后反思處理有關(guān)圓錐曲線與圓相結(jié)合的問(wèn)題,要特別注意圓心、半徑及平面幾何知識(shí)的應(yīng)用,如直徑對(duì)的圓心角為直角,構(gòu)成了垂直關(guān)系;弦心距、半徑、弦長(zhǎng)的一半構(gòu)成直角三角形.利用圓的一些特殊幾何性質(zhì)解題,往往使問(wèn)題簡(jiǎn)化.-22-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三命題熱點(diǎn)四對(duì)點(diǎn)訓(xùn)練4如圖,設(shè)橢圓

+y2=1(a>1).(1)求直線y=kx+1被橢圓截得的線段長(zhǎng)(用a,k表示);(2)若任意以點(diǎn)A(0,1)為圓心的圓與橢圓至多有3個(gè)公共點(diǎn),求橢圓離心率的取值范圍.-23-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三命題熱點(diǎn)四(2)假設(shè)圓與橢圓的公共點(diǎn)有4個(gè),由對(duì)稱性可設(shè)y軸左側(cè)的橢圓上有兩個(gè)不同的點(diǎn)P,Q,滿足|AP|=|AQ|.記直線AP,AQ的斜率分別為k1,k2,且k1,k2>0,k1≠k2.-24-命題熱點(diǎn)一命題熱點(diǎn)二命題熱點(diǎn)三命題熱點(diǎn)四-25-D解析:∵A(0,b),B(0,-b),C(a,0),F(c,0),-26-答案解析解析關(guān)閉答案解析關(guān)閉-27-答案解析解析關(guān)閉答案解析關(guān)閉-28-4.過(guò)點(diǎn)F(1,0)且與直線x=-1相切的動(dòng)圓圓心M的軌跡方程為

.

y2=4x解析:設(shè)動(dòng)圓的圓心為M(x,y),∵圓M經(jīng)過(guò)點(diǎn)F(1,0)且與直線l:x=-1相切,∴點(diǎn)M到點(diǎn)F的距離等于點(diǎn)M到直線l的距離.由拋物線的定義,得M的軌跡是以點(diǎn)F為焦點(diǎn),直線l為準(zhǔn)線的拋物線.設(shè)方程為y2=2px(p>0),可知

=1,即2p=4,故M的軌跡方程是y2=4x.-29-5.設(shè)F1,F2分別是橢圓C

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論