陜西省咸陽市如意中學(xué)高一數(shù)學(xué)文模擬試卷含解析_第1頁
陜西省咸陽市如意中學(xué)高一數(shù)學(xué)文模擬試卷含解析_第2頁
陜西省咸陽市如意中學(xué)高一數(shù)學(xué)文模擬試卷含解析_第3頁
陜西省咸陽市如意中學(xué)高一數(shù)學(xué)文模擬試卷含解析_第4頁
陜西省咸陽市如意中學(xué)高一數(shù)學(xué)文模擬試卷含解析_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

陜西省咸陽市如意中學(xué)高一數(shù)學(xué)文模擬試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.

雙曲線的漸近線方程為(

)A.

B.

C.

D.參考答案:C2.三個(gè)數(shù)a=0.292,b=log20.29,c=20.29之間的大小關(guān)系為(

)A.a(chǎn)<c<b B.a(chǎn)<b<c C.b<a<c D.b<c<a參考答案:C【考點(diǎn)】對(duì)數(shù)值大小的比較.【專題】轉(zhuǎn)化思想;數(shù)學(xué)模型法;函數(shù)的性質(zhì)及應(yīng)用.【分析】利用指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性即可得出.【解答】解:∵1>a=0.292>0,b=log20.29<0,c=20.29>1,∴b<a<c.故選:C.【點(diǎn)評(píng)】本題考查了指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.3.函數(shù)的定義域?yàn)?/p>

參考答案:B4.不等式的解集為,則的取值范圍是(

)A.

B.

C.

D.參考答案:B略5.3.設(shè){an}是等比數(shù)列,若a2=3,a7=1,則數(shù)列{an}前8項(xiàng)的積為()A.56B.80C.81D.128參考答案:6.已知函數(shù)與函數(shù)的圖象關(guān)于直線對(duì)稱,則不等式的解集為(

).A.(-2,-1] B.[-2,-1] C. D.(-2,0) 參考答案:B∵函數(shù)與函數(shù)的圖象關(guān)于直線對(duì)稱,∴,∴,∴,∴,解得.故選.7.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若=3,則=

)A.2

B.

C.

D.3參考答案:B8.若函數(shù)的定義域是,則函數(shù)的定義域是(

A

B.

C.

D.參考答案:A略9.有5件產(chǎn)品,其中3件正品,2件次品,從中任取2件,則互斥而不對(duì)立的兩個(gè)事件是(

)A.至少有1件次品與至多有1件正品

B.至少有1件次品與都是正品C.至少有1件次品與至少有1件正品

D.恰有1件次品與恰有2件正品參考答案:D10.已知{an}為等比數(shù)列,Sn是它的前n項(xiàng)和.若,且與的等差中項(xiàng)為,則()A.31 B.32 C. D.參考答案:A【分析】根據(jù)與的等差中項(xiàng)為,可得到一個(gè)等式,和,組成一個(gè)方程組,結(jié)合等比數(shù)列的性質(zhì),這個(gè)方程組轉(zhuǎn)化為關(guān)于和公比的方程組,解這個(gè)方程組,求出和公比的值,再利用等比數(shù)列前項(xiàng)和公式,求出的值.【詳解】因?yàn)榕c的等差中項(xiàng)為,所以,因此有,故本題選A.【點(diǎn)睛】本題考查了等差中項(xiàng)的性質(zhì),等比數(shù)列的通項(xiàng)公式以及前項(xiàng)和公式,二、填空題:本大題共7小題,每小題4分,共28分11.已知奇函數(shù)在定義域上是減函數(shù),且,則的取值范圍是

參考答案:略12.請(qǐng)將下面不完整的命題補(bǔ)充完整,并使之成為真命題:若函數(shù)f(x)=2-1的圖像與g(x)的圖像關(guān)于直線_____________對(duì)稱,則g(x)=_______________.參考答案:答案:如①y=0,-+1;②x=0,-1;③等解析:答案不唯一,畫圖滿足題意即可。13.已知函數(shù)f(x)=x2﹣2ax+b是定義在區(qū)間[﹣2b,3b﹣1]上的偶函數(shù),則函數(shù)f(x)的值域?yàn)椋畢⒖即鸢福篬1,5]∵函數(shù)在區(qū)間上的偶函數(shù)∴∴即[1,5].

14.已知橢圓4x2+kx2=4的一個(gè)焦點(diǎn)是(0,),則k=.參考答案:1【考點(diǎn)】橢圓的簡(jiǎn)單性質(zhì).【分析】根據(jù)題意,先將橢圓方程化為標(biāo)準(zhǔn)形式可得x2+=1,進(jìn)而由其焦點(diǎn)的坐標(biāo)可得,解可得k的值,即可得答案.【解答】解:根據(jù)題意,橢圓4x2+kx2=4化為標(biāo)準(zhǔn)形式可得x2+=1,又由其一個(gè)焦點(diǎn)是(0,),則橢圓的焦點(diǎn)在y軸上,且c=,則有,解可得k=1,故答案為:1.15.已知中,角,,所對(duì)的邊分別為,外接圓半徑是1,且滿足條件,則的面積的最大值為

.參考答案:16.口袋內(nèi)有100個(gè)大小相同的紅球、白球和黑球,其中有45個(gè)紅球,從中摸出1個(gè)球,摸出白球的概率為0.23,則摸出黑球的概率為.參考答案:0.32【考點(diǎn)】C7:等可能事件的概率.【分析】因?yàn)榭诖鼉?nèi)有100個(gè)大小相同的紅球、白球和黑球,從中摸出1個(gè)球,摸出白球的概率為0.23,所以可求出口袋內(nèi)白球數(shù).再根據(jù)其中有45個(gè)紅球,可求出黑球數(shù),最后,利用等可能性事件的概率求法,就可求出從中摸出1個(gè)球,摸出黑球的概率.【解答】解:∵口袋內(nèi)有100個(gè)大小相同的紅球、白球和黑球從中摸出1個(gè)球,摸出白球的概率為0.23,∴口袋內(nèi)白球數(shù)為32個(gè),又∵有45個(gè)紅球,∴為32個(gè).從中摸出1個(gè)球,摸出黑球的概率為=0.32故答案為0.3217.在120個(gè)零件中,一級(jí)品24個(gè),二級(jí)品36個(gè),三級(jí)品60個(gè),用系統(tǒng)抽樣方法從中抽取容量為20的樣本,則三級(jí)品a被抽到的可能性為________.參考答案:略三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.(12分)計(jì)算下列各題的值.(1)已知函數(shù),且,計(jì)算的值;(2)設(shè),且,求的值.參考答案:19.若f(x)是定義在(0,+∞)上的增函數(shù),且對(duì)一切x,y>0,滿足f()=f(x)﹣f(y),(1)求f(1)的值;(2)證明f(x2)=2f(x)(x>0);(3)若f(4)=1,解關(guān)于x不等式f(x2+x)﹣f()<2.參考答案:【考點(diǎn)】抽象函數(shù)及其應(yīng)用;函數(shù)單調(diào)性的性質(zhì).【專題】綜合題;函數(shù)思想;綜合法;函數(shù)的性質(zhì)及應(yīng)用.【分析】(1)令x=y=1,即可求得f(1)的值;(2)令y=,得到f(x2)=f(x)﹣f(),而f()=f(1)﹣f(x)=﹣f(x),問題得以證明.(3)令x=16,y=4,求出f(16)=2,根據(jù)函數(shù)的單調(diào)性得到不等式組,解得即可.【解答】解:(1)令x=y=1,由f()=f(x)﹣f(y),可得f(1)=f(1)﹣f(1),即有f(1)=0;(2)令y=,∴f(x2)=f(x)﹣f()=f(x)﹣[f(1)﹣f(x)]=f(x)+f(x)=2f(x),∴f(x2)=2f(x)(x>0);(3)令x=16,y=4,∴f(4)=f(16)﹣f(4),∴f(16)=2f(4)=2,∵f(x2+x)﹣f()<2,∴f(3x2+8x)<f(16),∵f(x)是定義在(0,+∞)上的增函數(shù),∴,解得:﹣4<x<﹣,或0<x<,∴不等式得解集(﹣4,﹣)∪(0,).【點(diǎn)評(píng)】本題主要考查抽象函數(shù)的應(yīng)用,利用賦值法是解決抽象函數(shù)的基本方法.結(jié)合函數(shù)的單調(diào)性是解決本題的關(guān)鍵.20.已知函數(shù)cos2x+1,(1)求f(x)的圖象的對(duì)稱軸方程;(2)求f(x)在上的最大值和最小值;(3)若對(duì)任意實(shí)數(shù)x,不等式|f(x)﹣m|<2在x∈[,]上恒成立,求實(shí)數(shù)m的取值范圍.參考答案:【考點(diǎn)】三角函數(shù)的最值;函數(shù)的最值及其幾何意義;正弦函數(shù)的對(duì)稱性.【分析】(1)化簡(jiǎn)f(x)的解析式,求出函數(shù)的對(duì)稱軸即可;(2)降冪后利用兩角差的正弦函數(shù)化積,然后利用x的取值范圍求得函數(shù)的最大值和最小值;(3)不等式|f(x)﹣m|<2在x∈[,]上恒成立,轉(zhuǎn)化為m﹣2<f(x)<m+2在x∈[,]上恒成立,進(jìn)一步轉(zhuǎn)化為m﹣2,m+2與函數(shù)f(x)在x∈[,]上的最值的關(guān)系,列不等式后求得實(shí)數(shù)m的取值范圍.【解答】解:(1)f(x)=2cos2(x﹣)﹣cos2x+1=cos(2x﹣)﹣cos2x+2=sin2x﹣cos2x+2=2sin(2x﹣)+2,對(duì)稱軸方程是;(2)由(1)得:f(x)=2sin(2x﹣)+2.∵x∈[,],∴2x﹣∈[,],∴當(dāng)2x﹣=,即x=時(shí),fmin(x)=3.當(dāng)2x﹣=,即x=時(shí),fmax(x)=4;(3)|f(x)﹣m|<2?m﹣2<f(x)<m+2,∵對(duì)任意實(shí)數(shù)x,不等式|f(x)﹣m|<2在x∈[,]上恒成立,∴,即,解得:2<m<5.故m的取值范圍為(2,5).【點(diǎn)評(píng)】本題考查了三角函數(shù)倍角公式,兩角差的正弦公式,考查了三角函數(shù)最值的求法,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,關(guān)鍵是把不等式恒成立問題轉(zhuǎn)化為含m的代數(shù)式與f(x)的最值關(guān)系問題,是中檔題.21.(15分)已知圓的半徑為,圓心在直線y=2x上,圓被直線x﹣y=0截得的弦長(zhǎng)為,求圓的方程.參考答案:考點(diǎn): 關(guān)于點(diǎn)、直線對(duì)稱的圓的方程.專題: 計(jì)算題.分析: 設(shè)圓心(a,2a),由弦長(zhǎng)求出a的值,得到圓心的坐標(biāo),又已知半徑,故可寫出圓的標(biāo)準(zhǔn)方程.解答: 設(shè)圓心(a,2a),由弦長(zhǎng)公式求得弦心距d==,再由點(diǎn)到直線的距離公式得d==|a|,∴a=±2,∴圓心坐標(biāo)為(2,4),或(﹣2,﹣4),又半徑為,∴所求的圓的方程為:(x﹣2)2+(y﹣4)2=10或(x+2)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論