課時考點解斜三角形_第1頁
課時考點解斜三角形_第2頁
課時考點解斜三角形_第3頁
課時考點解斜三角形_第4頁
課時考點解斜三角形_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

三角形中的三角函數(shù)關(guān)系是歷年高考的重點內(nèi)容之一,本節(jié)主要幫助考生深刻理解正、余弦定理,掌握解斜三角形的方法和技巧(3)能熟練運用三角形基礎(chǔ)知識,正、余弦定理及面積公式與三角函數(shù)公式配合,通過等價轉(zhuǎn)化或構(gòu)建方程解答三角形的綜合問題,注意隱含條件的挖掘1大邊長為12,最小角的正弦值為。3(1)判斷△ABC的形狀;(2)求△ABC的面積。::sinB=sinB=sin(A+C),從而(#)式變?yōu)閟in(A+C)=sinAcosC,2(2)△ABC的最大邊長為12,由(1)知斜邊a=12,又△ABC最小3為82△ABC2啟示:對于涉及三角形的三角函數(shù)變換非常重要,如:22222222運用正弦定理、余弦定理,要注意邊角互換.分析:三角形分類是按邊或角進(jìn)行的,所以判定三角形形狀時一般要把條件轉(zhuǎn)化為邊之間2(鈍角三角形)或sin(A-B)=0,sinA=sinB,sinC=1或cosC=0等一些等式,進(jìn)而判定其形狀,但在選擇轉(zhuǎn)化為邊或是角的關(guān)系上,要進(jìn)行探索.解法一:由同角三角函數(shù)關(guān)系及正弦定理可推得,知和正弦定理可得:整理得a4-a2c2+b2c2-b4=0,即(a2-b2)(a2+b2-c2)=0,熱點題型2與數(shù)列及平面向量的數(shù)量積的綜合4(1)求cotA+cotC的值;3 (2)若BA.BC=,求a+c的值333333解:(1)由cosB=3得:sinB=744sinAsinCsinAsinCsin2BsinB147===sinBsinB722432ac2ac233333幾幾3BB2幾B幾B∴A=一C=一∴sin(一)+sin(一)=2sinB32323232,化簡,得BBBBB3BBBBB322222428466在ΔABC中,已知AB=,cosB=,4666126DEDE=AB=23B826673363AHDC6221 2=3sinA=70BCsinB=30sinA30146633336363333+99==+.+999933BN=BP2PN2=BP2AH2=(25)2()2=CN=HB=333==22361"∴sin(B+C)=2sinAcosB∴sinA=2sinAcosB∴cosB=∴B=232"VABC23R2sinAsinC=VABC23SVABC334熱點

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論