版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
貴州省從江縣2024屆九年級(jí)數(shù)學(xué)第一學(xué)期期末調(diào)研試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.關(guān)于x的一元二次方程x2+(a2﹣2a)x+a﹣1=0的兩個(gè)實(shí)數(shù)根互為相反數(shù),則a的值為()A.2 B.0 C.1 D.2或02.如圖,圖1是由5個(gè)完全相同的正方體堆成的幾何體,現(xiàn)將標(biāo)有E的正方體平移至如圖2所示的位置,下列說法中正確的是()A.左、右兩個(gè)幾何體的主視圖相同B.左、右兩個(gè)幾何體的左視圖相同C.左、右兩個(gè)幾何體的俯視圖不相同D.左、右兩個(gè)幾何體的三視圖不相同3.如圖,四點(diǎn)在⊙上,.則的度數(shù)為()A. B. C. D.4.如圖,排球運(yùn)動(dòng)員站在點(diǎn)O處練習(xí)發(fā)球,將球從O點(diǎn)正上方2m的A處發(fā)出,把球看成點(diǎn),其運(yùn)行的高度y(m)與運(yùn)行的水平距離x(m)滿足關(guān)系式y(tǒng)=a(x﹣k)2+h.已知球與D點(diǎn)的水平距離為6m時(shí),達(dá)到最高2.6m,球網(wǎng)與D點(diǎn)的水平距離為9m.高度為2.43m,球場的邊界距O點(diǎn)的水平距離為18m,則下列判斷正確的是()A.球不會(huì)過網(wǎng) B.球會(huì)過球網(wǎng)但不會(huì)出界C.球會(huì)過球網(wǎng)并會(huì)出界 D.無法確定5.一個(gè)長方形的面積為,且一邊長為,則另一邊的長為()A. B. C. D.6.如圖,等腰直角△ABC中,AB=AC=8,以AB為直徑的半圓O交斜邊BC于D,則陰影部分面積為(結(jié)果保留π)()A.24﹣4π B.32﹣4π C.32﹣8π D.167.兩個(gè)相似三角形的對(duì)應(yīng)邊分別是15cm和23cm,它們的周長相差40cm,則這兩個(gè)三角形的周長分別是()A.45cm,85cm B.60cm,100cm C.75cm,115cm D.85cm,125cm8.在一個(gè)不透明的盒子里有2個(gè)紅球和n個(gè)白球,這些球除顏色外其余完全相同,搖勻后隨機(jī)摸出一個(gè),摸到紅球的概率是,則n的值為()A.3 B.5 C.8 D.109.若正六邊形的邊長為6,則其外接圓半徑為()A.3 B.3 C.3 D.610.如圖,正方形ABCD的邊長是4,∠DAC的平分線交DC于點(diǎn)E,若點(diǎn)P、Q分別是AD和AE上的動(dòng)點(diǎn),則DQ+PQ的最小值()A.2B.4C.2D.4二、填空題(每小題3分,共24分)11.如圖,⊙O的半徑為6,四邊形ABCD內(nèi)接于⊙O,連接OB,OD,若∠BOD=∠BCD,則弧BD的長為________.12.如圖,直角三角形的直角頂點(diǎn)在坐標(biāo)原點(diǎn),,若點(diǎn)在反比例函數(shù)的圖象上,則經(jīng)過點(diǎn)的反比例函數(shù)解析式為___;13.如圖,△ABC為⊙O的內(nèi)接三角形,若∠OBA=55°,則∠ACB=_____.14.用紙板制作了一個(gè)圓錐模型,它的底面半徑為1,高為,則這個(gè)圓錐的側(cè)面積為_________.15.一個(gè)口袋中裝有10個(gè)紅球和若干個(gè)黃球.在不允許將球倒出來數(shù)的前提下,為估計(jì)口袋中黃球的個(gè)數(shù),小明采用了如下的方法:每次先從口袋中摸出10個(gè)球,求出其中紅球數(shù)與10的比值,再把球放回口袋中搖勻.不斷重復(fù)上述過程20次,得到紅球數(shù)與10的比值的平均數(shù)為0.1.根據(jù)上述數(shù)據(jù),估計(jì)口袋中大約有_______個(gè)黃球16.已知y與x的函數(shù)滿足下列條件:①它的圖象經(jīng)過(1,1)點(diǎn);②當(dāng)時(shí),y隨x的增大而減?。畬懗鲆粋€(gè)符合條件的函數(shù):__________.17.小球在如圖6所示的地板上自由滾動(dòng),并隨機(jī)停留在某塊正方形的地磚上,則它停在白色地磚上的概率是____.
18.如圖,四邊形是菱形,經(jīng)過點(diǎn)、、與相交于點(diǎn),連接、,若,則的度數(shù)為__________.三、解答題(共66分)19.(10分)(1)解方程:(2)如圖已知⊙的直徑,弦與弦平行,它們之間的距離為7,且,求弦的長.20.(6分)已知,如圖在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,點(diǎn)P由點(diǎn)A出發(fā)沿AB方向向終點(diǎn)B勻速移動(dòng),速度為1cm/s,點(diǎn)Q由點(diǎn)B出發(fā)沿BC方向向終點(diǎn)C勻速移動(dòng),速度為2cm/s.如果動(dòng)點(diǎn)P,Q同時(shí)從A,B出發(fā),當(dāng)P或Q到達(dá)終點(diǎn)時(shí)運(yùn)動(dòng)停止.幾秒后,以Q,B,P為頂點(diǎn)的三角形與△ABC相似?21.(6分)在平面直角坐標(biāo)系中,已知拋物線.(1)求拋物線的對(duì)稱軸;(2)當(dāng)時(shí),設(shè)拋物線與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),頂點(diǎn)為,若為等邊三角形,求的值;(3)過(其中)且垂直軸的直線與拋物線交于兩點(diǎn).若對(duì)于滿足條件的任意值,線段的長都不小于1,結(jié)合函數(shù)圖象,直接寫出的取值范圍.22.(8分)如圖1,已知拋物線y=x2+bx+c經(jīng)過點(diǎn)A(3,0),點(diǎn)B(﹣1,0),與y軸負(fù)半軸交于點(diǎn)C,連接BC、AC.(1)求拋物線的解析式;(2)在拋物線上是否存在點(diǎn)P,使得以A、B、C、P為頂點(diǎn)的四邊形的面積等于△ABC的面積的倍?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.(3)如圖2,直線BC與拋物線的對(duì)稱軸交于點(diǎn)K,將直線AC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)α°,直線AC在旋轉(zhuǎn)過程中的對(duì)應(yīng)直線A′C與拋物線的另一個(gè)交點(diǎn)為M.求在旋轉(zhuǎn)過程中△MCK為等腰三角形時(shí)點(diǎn)M的坐標(biāo).23.(8分)在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.(1)若花園的面積為192m2,求x的值;(2)若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),求花園面積S的最大值.24.(8分)如圖,從一塊長80厘米,寬60厘米的鐵片中間截去一個(gè)小長方形,使截去小長方形的面積是原來鐵片面積的一半,并且剩下的長方框四周的寬度一樣,求這個(gè)寬度.25.(10分)如圖1,中,是的高.(1)求證:.(2)與相似嗎?為什么?(3)如圖2,設(shè)的中點(diǎn)為的中點(diǎn)為,連接,求的長.26.(10分)如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交AC,BC于點(diǎn)D,E,過點(diǎn)B作AB的垂線交AC的延長線于點(diǎn)F.(1)求證:;(2)過點(diǎn)C作CG⊥BF于G,若AB=5,BC=2,求CG,F(xiàn)G的長.
參考答案一、選擇題(每小題3分,共30分)1、B【解題分析】設(shè)方程的兩根為x1,x2,
根據(jù)題意得x1+x2=1,
所以a2-2a=1,解得a=1或a=2,
當(dāng)a=2時(shí),方程化為x2+1=1,△=-4<1,故a=2舍去,
所以a的值為1.
故選B.2、B【分析】直接利用已知幾何體分別得出三視圖進(jìn)而分析得出答案.【題目詳解】A、左、右兩個(gè)幾何體的主視圖為:,故此選項(xiàng)錯(cuò)誤;B、左、右兩個(gè)幾何體的左視圖為:,故此選項(xiàng)正確;C、左、右兩個(gè)幾何體的俯視圖為:,故此選項(xiàng)錯(cuò)誤;D、由以上可得,此選項(xiàng)錯(cuò)誤;故選B.【題目點(diǎn)撥】此題主要考查了簡單幾何體的三視圖,正確把握觀察的角度是解題關(guān)鍵.3、B【分析】連接BO,由可得,則,由圓周角定理,得,即可得到答案.【題目詳解】解:如圖,連接BO,則∵,∴,∴,∵,∴;故選:B.【題目點(diǎn)撥】本題考查了垂徑定理,以及圓周角定理,解題的關(guān)鍵是正確作出輔助線,得到.4、C【解題分析】分析:(1)將點(diǎn)A(0,2)代入求出a的值;分別求出x=9和x=18時(shí)的函數(shù)值,再分別與2.43、0比較大小可得.詳解:根據(jù)題意,將點(diǎn)A(0,2)代入得:36a+2.6=2,解得:∴y與x的關(guān)系式為當(dāng)x=9時(shí),∴球能過球網(wǎng),當(dāng)x=18時(shí),∴球會(huì)出界.故選C.點(diǎn)睛:考查二次函數(shù)的應(yīng)用題,求范圍的問題,可以利用臨界點(diǎn)法求出自變量的值,根據(jù)題意確定范圍.5、A【分析】根據(jù)長方形的面積公式結(jié)合多項(xiàng)式除以多項(xiàng)式運(yùn)算法則解題即可.【題目詳解】長方形的面積為,且一邊長為,另一邊的長為故選:A.【題目點(diǎn)撥】本題考查多項(xiàng)式除以單項(xiàng)式、長方形的面積等知識(shí),是常見考點(diǎn),難度較易,掌握相關(guān)知識(shí)是解題關(guān)鍵.6、A【解題分析】試題分析:連接AD,OD,∵等腰直角△ABC中,∴∠ABD=45°.∵AB是圓的直徑,∴∠ADB=90°,∴△ABD也是等腰直角三角形,∴.∵AB=8,∴AD=BD=4,∴S陰影=S△ABC-S△ABD-S弓形AD=S△ABC-S△ABD-(S扇形AOD-S△ABD)=×8×8-×4×4-+××4×4=16-4π+8=24-4π.故選A.考點(diǎn):扇形面積的計(jì)算.7、C【解題分析】根據(jù)相似三角形的周長的比等于相似比列出方程,解方程即可.【題目詳解】設(shè)小三角形的周長為xcm,則大三角形的周長為(x+40)cm,
由題意得,,
解得,x=75,
則x+40=115,故選C.8、C【解題分析】試題分析:在一個(gè)不透明的盒子里有2個(gè)紅球和n個(gè)白球,這些球除顏色外其余完全相同,搖勻后隨機(jī)摸出一個(gè),摸到紅球的概率是,而其概率為,因此可得=,解得n=8.故選B.考點(diǎn):概率的求法9、D【分析】連接正六邊形的中心和各頂點(diǎn),得到六個(gè)全等的正三角形,于是可知正六邊形的邊長等于正三角形的邊長,為正六邊形的外接圓半徑.【題目詳解】如圖為正六邊形的外接圓,ABCDEF是正六邊形,∴∠AOF=10°,∵OA=OF,∴△AOF是等邊三角形,∴OA=AF=1.所以正六邊形的外接圓半徑等于邊長,即其外接圓半徑為1.故選D.【題目點(diǎn)撥】本題考查了正六邊形的外接圓的知識(shí),解題的關(guān)鍵是畫出圖形,找出線段之間的關(guān)系.10、C【分析】過D作AE的垂線交AE于F,交AC于D′,再過D′作AP′⊥AD,由角平分線的性質(zhì)可得出D′是D關(guān)于AE的對(duì)稱點(diǎn),進(jìn)而可知D′P′即為DQ+PQ的最小值.【題目詳解】作D關(guān)于AE的對(duì)稱點(diǎn)D′,再過D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D關(guān)于AE的對(duì)稱點(diǎn),AD′=AD=4,∴D′P′即為DQ+PQ的最小值,∵四邊形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D’,2P′D′2=AD′2,即2P′D′2=16,∴P′D′=22,即DQ+PQ的最小值為22,故答案為C.【題目點(diǎn)撥】本題考查了正方形的性質(zhì)以及角平分線的性質(zhì)和全等三角形的判定和性質(zhì)和軸對(duì)稱-最短路線問題,根據(jù)題意作出輔助線是解答此題的二、填空題(每小題3分,共24分)11、4π【解題分析】根據(jù)圓內(nèi)接四邊形對(duì)角互補(bǔ)可得∠BCD+∠A=180°,再根據(jù)同弧所對(duì)的圓周角與圓心角的關(guān)系以及∠BOD=∠BCD,可求得∠A=60°,從而得∠BOD=120°,再利用弧長公式進(jìn)行計(jì)算即可得.【題目詳解】解:∵四邊形ABCD內(nèi)接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴的長=,故答案為4π.【題目點(diǎn)撥】本題考查了圓周角定理、弧長公式等,求得∠A的度數(shù)是解題的關(guān)鍵.12、【解題分析】構(gòu)造K字型相似模型,直接利用相似三角形的判定與性質(zhì)得出,而由反比例性質(zhì)可知S△AOD==3,即可得出答案.【題目詳解】解:過點(diǎn)B作BC⊥x軸于點(diǎn)C,過點(diǎn)A作AD⊥x軸于點(diǎn)D,
∵∠BOA=90°,
∴∠BOC+∠AOD=90°,
∵∠AOD+∠OAD=90°,
∴∠BOC=∠OAD,
又∵∠BCO=∠ADO=90°,
∴△BCO∽△ODA,
∴,
∴,∴S△BCO=S△AOD
∵S△AOD===3,∴S△BCO=×3=1∵經(jīng)過點(diǎn)B的反比例函數(shù)圖象在第二象限,
故反比例函數(shù)解析式為:y=.
故答案為.【題目點(diǎn)撥】此題主要考查了相似三角形的判定與性質(zhì)以及反比例函數(shù)數(shù)的性質(zhì),正確得出S△BOC=1是解題關(guān)鍵.13、35°【分析】先利用等腰三角形的性質(zhì)得∠OAB=∠OBA=55°,再根據(jù)三角形內(nèi)角和定理,計(jì)算出∠AOB=70°,然后根據(jù)圓周角定理求解.【題目詳解】∵OA=OB,∴∠OAB=∠OBA=55°,∴∠AOB=180°﹣55°×2=70°,∴∠ACB=∠AOB=35°.故答案為:35°.【題目點(diǎn)撥】本題主要考查圓周角定理,掌握同弧所對(duì)的圓周角是圓心角的一半,是解題的關(guān)鍵.14、【分析】根據(jù)圓錐的側(cè)面積公式計(jì)算即可得到結(jié)果.【題目詳解】解:根據(jù)題意得:S=π×1×=3π,
故填:3π.【題目點(diǎn)撥】此題考查了圓錐的計(jì)算,熟練掌握?qǐng)A錐的側(cè)面積公式是解本題的關(guān)鍵.15、2【題目詳解】解:∵小明通過多次摸球?qū)嶒?yàn)后發(fā)現(xiàn)其中摸到紅色球的頻率穩(wěn)定在0.1,設(shè)黃球有x個(gè),∴0.1(x+10)=10,解得x=2.答:口袋中黃色球的個(gè)數(shù)很可能是2個(gè).16、y=-x+2(答案不唯一)【解題分析】①圖象經(jīng)過(1,1)點(diǎn);②當(dāng)x>1時(shí).y隨x的增大而減小,這個(gè)函數(shù)解析式為y=-x+2,故答案為y=-x+2(答案不唯一).17、【分析】先求出瓷磚的總數(shù),再求出白色瓷磚的個(gè)數(shù),利用概率公式即可得出結(jié)論.【題目詳解】由圖可知,共有5塊瓷磚,白色的有3塊,所以它停在白色地磚上的概率=.考點(diǎn):概率.18、【分析】根據(jù)菱形的性質(zhì)得到∠ACB=∠DCB=(180°?∠D)=51°,根據(jù)圓內(nèi)接四邊形的性質(zhì)得到∠AEB=∠D=78°,由三角形的外角的性質(zhì)即可得到結(jié)論.【題目詳解】解:∵四邊形ABCD是菱形,∠D=78°,
∴∠ACB=∠DCB=(180°?∠D)=51°,
∵四邊形AECD是圓內(nèi)接四邊形,
∴∠AEB=∠D=78°,
∴∠EAC=∠AEB?∠ACE=27°,
故答案為:27°.【題目點(diǎn)撥】本題考查了菱形的性質(zhì),三角形的外角的性質(zhì),圓內(nèi)接四邊形的性質(zhì),熟練掌握菱形的性質(zhì)是解題的關(guān)鍵.三、解答題(共66分)19、(1);(2)1.【分析】(1)先移項(xiàng),然后利用因式分解法解方程即可(2)作OM⊥AB于M,ON⊥CD于N,連接OA、OC,根據(jù)垂徑定理求出AM,根據(jù)勾股定理求出OM,根據(jù)題意求出ON,根據(jù)勾股定理、垂徑定理計(jì)算即可.【題目詳解】(1)解:∵或(2)作OM⊥AB于M,ON⊥CD于N,連接OA、OC,則∵∴點(diǎn)在同一條直線上,在中∴在中,∵∴【題目點(diǎn)撥】本題考查了解一元二次方程、垂徑定理和勾股定理的應(yīng)用,掌握垂直于弦的直徑平分這條弦是解題的關(guān)鍵.20、2.4秒或秒【分析】設(shè)t秒后,以Q,B,P為頂點(diǎn)的三角形與△ABC相似;則PB=(6-t)cm,BQ=2tcm,分兩種情況:①當(dāng)時(shí),②當(dāng)時(shí),分別解方程即可得出結(jié)果.【題目詳解】解:設(shè)t秒后,以Q,B,P為頂點(diǎn)的三角形與△ABC相似,則PB=(6﹣t)cm,BQ=2tcm,∵∠B=90°,∴分兩種情況:①當(dāng)時(shí),即,解得:t=2.4;②當(dāng)時(shí),即,解得:t=;綜上所述:2.4秒或秒時(shí),以Q,B,P為頂點(diǎn)的三角形與△ABC相似.【題目點(diǎn)撥】本題主要考查了相似三角形的判定,掌握相似三角形的判定是解題的關(guān)鍵.21、(1)x=2;(2);(3)或.【解題分析】(1)利用配方法將二次函數(shù)解析式變形為頂點(diǎn)式,由此即可得出拋物線的對(duì)稱軸;(2)利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出點(diǎn)A,B的坐標(biāo),由(1)可得出頂點(diǎn)C的坐標(biāo),再利用等邊三角形的性質(zhì)可得出關(guān)于a的一元一次方程,解之即可得出a值;(3)分及兩種情況考慮:①當(dāng)時(shí),利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出關(guān)于a的一元一次不等式,解之即可得出a的取值范圍;②當(dāng)時(shí),利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出關(guān)于a的一元一次不等式,解之即可得出a的取值范圍.綜上,此題得解.【題目詳解】(1)∵,∴拋物線的對(duì)稱軸為直線.(2)依照題意,畫出圖形,如圖1所示.當(dāng)時(shí),,即,解得:,.由(1)可知,頂點(diǎn)的坐標(biāo)為.∵,∴.∵為等邊三角形,∴點(diǎn)的坐標(biāo)為,∴,∴.(3)分兩種情況考慮,如圖2所示:①當(dāng)時(shí),,解得:;②當(dāng)時(shí),,解得:.【題目點(diǎn)撥】本題考查了二次函數(shù)的三種形式、二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、等邊三角形的性質(zhì)以及解一元一次不等式.22、(1)y=x2﹣x﹣;(2)存在符合條件的點(diǎn)P,且坐標(biāo)為(,)、(,)、(1,﹣)、(2,﹣);(3)點(diǎn)M的坐標(biāo)是(2,﹣)或(1,﹣).【分析】(1)知道A、B兩點(diǎn)坐標(biāo)后,利用待定系數(shù)法可確定該拋物線的解析式.(2)此題中,以A、B、C、P為頂點(diǎn)的四邊形可分作兩部分,若該四邊形的面積是△ABC面積的1.5倍,那么四邊形中除△ABC以外部分的面積應(yīng)是△ABC面積的一半,分三種情況:①當(dāng)點(diǎn)P在x軸上方時(shí),△ABP的面積應(yīng)該是△ABC面積的一半,因此點(diǎn)P的縱坐標(biāo)應(yīng)該是點(diǎn)C縱坐標(biāo)絕對(duì)值的一半,代入拋物線解析式中即可確定點(diǎn)P的坐標(biāo);②當(dāng)點(diǎn)P在B、C段時(shí),顯然△BPC的面積要遠(yuǎn)小于△ABC面積的一半,此種情況不予考慮;③當(dāng)點(diǎn)P在A、C段時(shí),由A、C的長以及△ACP的面積可求出點(diǎn)P到直線AC的距離,首先在射線CK上取線段CD,使得CD的長等于點(diǎn)P到直線AC的距離,先求出過點(diǎn)D且平行于l1的直線解析式,這條直線與拋物線的交點(diǎn)即為符合條件的點(diǎn)P.(3)從題干的旋轉(zhuǎn)條件來看,直線l1旋轉(zhuǎn)的范圍應(yīng)該是直線AC、直線BC中間的部分,而△MCK的腰和底并不明確,所以分情況討論:①CK=CM、②KC=KM、③MC=MK;求出點(diǎn)M的坐標(biāo).【題目詳解】解:(1)如圖1,∵點(diǎn)A(3,0),點(diǎn)B(﹣1,0),∴,解得,則該拋物線的解析式為:y=x2﹣x﹣;(2)易知OA=3、OB=1、OC=,則:S△ABC=AB?OC=×4×=2.①當(dāng)點(diǎn)P在x軸上方時(shí),由題意知:S△ABP=S△ABC,則:點(diǎn)P到x軸的距離等于點(diǎn)C到x軸距離的一半,即點(diǎn)P的縱坐標(biāo)為;令y=x2﹣x﹣=,化簡得:2x2﹣4x﹣9=0解得x=;∴P1(,)、P2(,);②當(dāng)點(diǎn)P在拋物線的B、C段時(shí),顯然△BCP的面積要小于S△ABC,此種情況不合題意;③當(dāng)點(diǎn)P在拋物線的A、C段時(shí),S△ACP=AC?h=S△ABC=,則h=1;在射線CK上取點(diǎn)D,使得CD=h=1,過點(diǎn)D作直線DE∥AC,交y軸于點(diǎn)E,如圖2;在Rt△CDE中,∠ECD=∠BCO=30°,CD=1,則CE=、OE=OC+CE=,點(diǎn)E(0,﹣)∴直線DE:y=x﹣,聯(lián)立拋物線的解析式,有:,解得:或,∴P3(1,-)、P4(2,-);綜上,存在符合條件的點(diǎn)P,坐標(biāo)為(,),(,),(1,-),(2,-);(3)如圖3,由(1)知:y=x2-x-=(x﹣1)2﹣,∴拋物線的對(duì)稱軸x=1;①當(dāng)KC=KM時(shí),點(diǎn)C、M1關(guān)于拋物線的對(duì)稱軸x=1對(duì)稱,則點(diǎn)M1的坐標(biāo)是(2,﹣);②KC=CM時(shí),K(1,﹣2),KC=BC.則直線A′C與拋物線的另一交點(diǎn)M2與點(diǎn)B重合,M、C、K三點(diǎn)共線,不能構(gòu)成三角形;③當(dāng)MK=MC時(shí),點(diǎn)D是CK的中點(diǎn).∵∠OCA=60°,∠BCO=30°,∴∠BCA=90°,即BC⊥AC,則作線段KC的中垂線必平行AC且過點(diǎn)D,∴點(diǎn)M3與點(diǎn)P3(1,-)、P4(2,-)重合,綜上所述,點(diǎn)M的坐標(biāo)是(2,﹣)或(1,﹣).【題目點(diǎn)撥】該題考查了利用待定系數(shù)法確定函數(shù)解析式,圖形面積的解法以及等腰三角形的判定和性質(zhì)等重點(diǎn)知識(shí);后兩題涉及的情況較多,應(yīng)分類進(jìn)行討論,容易漏解.23、(1)12m或16m;(2)195.【分析】(1)、根據(jù)AB=x可得BC=28-x,然后根據(jù)面積列出一元二次方程求出x的值;(2)、根據(jù)題意列出S和x的函數(shù)關(guān)系熟,然后根據(jù)題意求出x的取值范圍,然后根據(jù)函數(shù)的性質(zhì)求出最大值.【題目詳解】(1)、∵AB=xm,則BC=(28﹣x)m,∴x(28﹣x)=192,解得:x1=12,x2=16,答:x的值為12m或16m(2)、∵AB=xm,∴BC=28﹣x,∴S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,∵在P處有一棵樹與墻CD,AD的距離分別是16m和6m,∵28-x≥15,x≥6∴6≤x≤13,∴當(dāng)x=13時(shí),S取到最大值為:S=﹣(13﹣14)2+196=195,答:花園面積S的最大值為195平方米.【題目點(diǎn)撥】題主要考查了二次函數(shù)的應(yīng)用以及二次函數(shù)最值求法,得出S與x的函數(shù)關(guān)系式是解題關(guān)鍵.24、長方框的寬度為10厘米【分析】設(shè)長方框的寬度為x厘米,則減去小長方形的長為(80﹣2x)厘
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030全球開放式框架工業(yè)顯示器行業(yè)調(diào)研及趨勢分析報(bào)告
- 2025年全球及中國平盤電滑環(huán)行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報(bào)告
- 2025-2030全球TGV基板行業(yè)調(diào)研及趨勢分析報(bào)告
- 2025年全球及中國完全生物基聚酰胺行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報(bào)告
- 幼兒繪本講述與演繹幼兒繪本講述的停連運(yùn)用技巧講解
- 2025景區(qū)商場蛇年新春嘉年華活動(dòng)策劃方案
- 2025綠洲集團(tuán)工程合同管理規(guī)范
- 沙石采購合同范本工程合同
- 2025【合同范本】打印機(jī)耗材長期供貨合同
- 防雷技術(shù)服務(wù)合同
- 第2課+古代希臘羅馬(教學(xué)設(shè)計(jì))-【中職專用】《世界歷史》(高教版2023基礎(chǔ)模塊)
- 中儲(chǔ)糧蘭州公司考試筆試題庫
- 焊接機(jī)器人在汽車制造中應(yīng)用案例分析報(bào)告
- 重建成長型思維課件
- 電捕焦油器火災(zāi)爆炸事故分析
- 質(zhì)量問題分析及措施報(bào)告
- 汽修廠安全風(fēng)險(xiǎn)分級(jí)管控清單
- 現(xiàn)代通信原理與技術(shù)(第五版)PPT全套完整教學(xué)課件
- 病例展示(皮膚科)
- DB31T 685-2019 養(yǎng)老機(jī)構(gòu)設(shè)施與服務(wù)要求
- 燕子山風(fēng)電場項(xiàng)目安全預(yù)評(píng)價(jià)報(bào)告
評(píng)論
0/150
提交評(píng)論