山東省諸城市桃林鎮(zhèn)桃林2024屆數(shù)學(xué)九上期末檢測試題含解析_第1頁
山東省諸城市桃林鎮(zhèn)桃林2024屆數(shù)學(xué)九上期末檢測試題含解析_第2頁
山東省諸城市桃林鎮(zhèn)桃林2024屆數(shù)學(xué)九上期末檢測試題含解析_第3頁
山東省諸城市桃林鎮(zhèn)桃林2024屆數(shù)學(xué)九上期末檢測試題含解析_第4頁
山東省諸城市桃林鎮(zhèn)桃林2024屆數(shù)學(xué)九上期末檢測試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

山東省諸城市桃林鎮(zhèn)桃林2024屆數(shù)學(xué)九上期末檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.一張圓心角為的扇形紙板和圓形紙板按如圖方式剪得一個正方形,邊長都為4,已知,則扇形紙板和圓形紙板的半徑之比是()A. B. C. D.2.有9名同學(xué)參加歌詠比賽,他們的預(yù)賽成績各不相同,現(xiàn)取其中前4名參加決賽,小紅同學(xué)在知道自己成績的情況下,要判斷自己能否進入決賽,還需要知道這9名同學(xué)成績的()A.平均數(shù) B.方差 C.中位數(shù) D.極差3.如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點A(3,0),頂點B在y軸正半軸上,頂點D在x軸負半軸上,若拋物線y=-x2-5x+c經(jīng)過點B、C,則菱形ABCD的面積為()A.15 B.20 C.25 D.304.如圖,AB是⊙O的弦,OD⊥AB于D交⊙O于E,則下列說法錯誤的是()A.AD=BD B.∠ACB=∠AOE C.弧AE=弧BE D.OD=DE5.在數(shù)軸上,點A所表示的實數(shù)為3,點B所表示的實數(shù)為a,⊙A的半徑為2,下列說法中不正確的是()A.當(dāng)1<a<5時,點B在⊙A內(nèi)B.當(dāng)a<5時,點B在⊙A內(nèi)C.當(dāng)a<1時,點B在⊙A外D.當(dāng)a>5時,點B在⊙A外6.如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));⑤當(dāng)﹣1<x<3時,y>0,其中正確的是()A.①②④ B.①②⑤ C.②③④ D.③④⑤7.已知一元二次方程x2+kx﹣5=0有一個根為1,k的值為()A.﹣2 B.2 C.﹣4 D.48.下列說法正確的是().A.“購買1張彩票就中獎”是不可能事件B.“概率為0.0001的事件”是不可能事件C.“任意畫一個三角形,它的內(nèi)角和等于180°”是必然事件D.任意擲一枚質(zhì)地均勻的硬幣10次,正面向上的一定是5次9.在Rt△ABC中,∠C=90°.若AC=2BC,則sinA的值是()A. B. C. D.210.下列命題中正確的是()A.對角線相等的四邊形是矩形B.對角線互相垂直的四邊形是菱形C.對角線互相垂直平分且相等的四邊形是正方形D.一組對邊相等,另一組對邊平行的四邊形是平行四邊形二、填空題(每小題3分,共24分)11.把拋物線沿著軸向左平移3個單位得到的拋物線關(guān)系式是_________.12.如圖,四邊形ABCD中,AB∥CD,∠C=90°,AB=1,CD=2,BC=3,點P為BC邊上一動點,若AP⊥DP,則BP的長為_____.13.在平面直角坐標(biāo)系中,點P(4,1)關(guān)于點(2,0)中心對稱的點的坐標(biāo)是_______.14.下列投影或利用投影現(xiàn)象中,________是平行投影,________是中心投影.(填序號)15.拋物線y=﹣x2+bx+c的部分圖象如圖所示,已知關(guān)于x的一元二次方程﹣x2+bx+c=0的一個解為x1=1,則該方程的另一個解為x2=_____.16.如圖,利用標(biāo)桿測量建筑物的高度,已知標(biāo)桿高1.2,測得,則建筑物的高是__________.17.一天,小青想利用影子測量校園內(nèi)一根旗桿的高度,在同一時刻內(nèi),小青的影長為米,旗桿的影長為米,若小青的身高為米,則旗桿的高度為__________米.18.某學(xué)校的初三(1)班,有男生20人,女生23人.現(xiàn)隨機抽一名學(xué)生,則:抽到一名男生的概率是_____.三、解答題(共66分)19.(10分)如圖1,在Rt△ABC中,∠BAC=90°,AB=AC,D,E兩點分別在AC,BC上,且DE∥AB,將△CDE繞點C按順時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α.(1)問題發(fā)現(xiàn):當(dāng)α=0°時,的值為;(2)拓展探究:當(dāng)0°≤α<360°時,若△EDC旋轉(zhuǎn)到如圖2的情況時,求出的值;(3)問題解決:當(dāng)△EDC旋轉(zhuǎn)至A,B,E三點共線時,若設(shè)CE=5,AC=4,直接寫出線段BE的長.20.(6分)已知關(guān)于x的一元二次方程:x2﹣(t﹣1)x+t﹣2=1.求證:對于任意實數(shù)t,方程都有實數(shù)根;21.(6分)如圖,菱形EFGH的三個頂點E、G、H分別在正方形ABCD的邊AB、CD、DA上,連接CF.(1)求證:∠HEA=∠CGF;(2)當(dāng)AH=DG時,求證:菱形EFGH為正方形.22.(8分)已知,如圖1,在中,,,,若為的中點,交與點.(1)求的長.(2)如圖2,點為射線上一動點,連接,線段繞點順時針旋轉(zhuǎn)交直線與點.①若時,求的長:②如圖3,連接交直線與點,當(dāng)為等腰三角形時,求的長.23.(8分)解不等式組,并求出它的整數(shù)解24.(8分)如圖,在平面直角坐標(biāo)系中,的頂點坐標(biāo)分別為(6,4),(4,0),(2,0).(1)在軸左側(cè),以為位似中心,畫出,使它與的相似比為1:2;(2)根據(jù)(1)的作圖,=.25.(10分)一個不透明的口袋中裝有紅、白兩種顏色的小球(除顏色外其余都相同),其中紅球3個,白球1個.(1)求任意摸出一球是白球的概率;(2)甲同學(xué)先隨機摸出一個小球(不放回),再隨機摸出一個小球,請用畫樹狀圖或列表的方法求兩次摸出都是紅球的概率.26.(10分)如圖1,拋物線y=ax2+bx+c與x軸交于A(-1,0),B(3,0)兩點,與y軸交于點C.點D(2,3)在該拋物線上,直線AD與y軸相交于點E,點F是直線AD上方的拋物線上的動點.(1)求該拋物線對應(yīng)的二次函數(shù)關(guān)系式;(2)當(dāng)點F到直線AD距離最大時,求點F的坐標(biāo);(3)如圖2,點M是拋物線的頂點,點P的坐標(biāo)為(0,n),點Q是坐標(biāo)平面內(nèi)一點,以A,M,P,Q為頂點的四邊形是AM為邊的矩形.①求n的值;②若點T和點Q關(guān)于AM所在直線對稱,求點T的坐標(biāo).

參考答案一、選擇題(每小題3分,共30分)1、A【分析】分別求出扇形和圓的半徑,即可求出比值.【題目詳解】如圖,連接OD,∵四邊形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=4,∵=,∴OB=AB=3,∴CO=7由勾股定理得:OD==r1;如圖2,連接MB、MC,∵四邊形ABCD是⊙M的內(nèi)接四邊形,四邊形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=4,∴MC=MB==r2∴扇形和圓形紙板的半徑比是:=故選:A.【題目點撥】本題考查了正方形性質(zhì)、圓內(nèi)接四邊形性質(zhì);解此題的關(guān)鍵是求出扇形和圓的半徑,題目比較好,難度適中.2、C【解題分析】9人成績的中位數(shù)是第5名的成績.參賽選手要想知道自己是否能進入前4名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【題目詳解】由于總共有9個人,且他們的分數(shù)互不相同,第5的成績是中位數(shù),要判斷是否進入前5名,故應(yīng)知道中位數(shù)的多少.故選:C.【題目點撥】此題主要考查統(tǒng)計的有關(guān)知識,主要包括平均數(shù)、中位數(shù)、極差、方差的意義,掌握相關(guān)知識點是解答此題的關(guān)鍵.3、B【分析】根據(jù)拋物線的解析式結(jié)合拋物線過點B、C,即可得出點C的橫坐標(biāo),由菱形的性質(zhì)可得出AD=AB=BC=1,再根據(jù)勾股定理可求出OB的長度,套用平行四邊形的面積公式即可得出菱形ABCD的面積.【題目詳解】解:拋物線的對稱軸為,∵拋物線y=-x2-1x+c經(jīng)過點B、C,且點B在y軸上,BC∥x軸,

∴點C的橫坐標(biāo)為-1.

∵四邊形ABCD為菱形,

∴AB=BC=AD=1,

∴點D的坐標(biāo)為(-2,0),OA=2.

在Rt△ABC中,AB=1,OA=2,∴OB=,∴S菱形ABCD=AD?OB=1×4=3.

故選:B.【題目點撥】本題考查了二次函數(shù)圖象上點的坐標(biāo)特征、二次函數(shù)的性質(zhì)、菱形的性質(zhì)以及平行四邊形的面積,根據(jù)二次函數(shù)的性質(zhì)、菱形的性質(zhì)結(jié)合勾股定理求出AD=1、OB=4是解題的關(guān)鍵.4、D【解題分析】由垂徑定理和圓周角定理可證,AD=BD,AD=BD,AE=BE,而點D不一定是OE的中點,故D錯誤.【題目詳解】∵OD⊥AB,∴由垂徑定理知,點D是AB的中點,有AD=BD,=,∴△AOB是等腰三角形,OD是∠AOB的平分線,有∠AOE=12∠AOB,由圓周角定理知,∠C=12∠AOB,∴∠ACB=∠AOE,故A、B、C正確,而點D不一定是OE的中點,故錯誤.故選D.【題目點撥】本題主要考查圓周角定理和垂徑定理,熟練掌握這兩個定理是解答此題的關(guān)鍵.5、B【解題分析】試題解析:由于圓心A在數(shù)軸上的坐標(biāo)為3,圓的半徑為2,∴當(dāng)d=r時,⊙A與數(shù)軸交于兩點:1、5,故當(dāng)a=1、5時點B在⊙A上;當(dāng)d<r即當(dāng)1<a<5時,點B在⊙A內(nèi);當(dāng)d>r即當(dāng)a<1或a>5時,點B在⊙A外.由以上結(jié)論可知選項A、C、D正確,選項B錯誤.故選B.點睛:若用d、r分別表示點到圓心的距離和圓的半徑,則當(dāng)d>r時,點在圓外;當(dāng)d=r時,點在圓上;當(dāng)d<r時,點在圓內(nèi).6、A【分析】由拋物線的開口方向判斷a與2的關(guān)系,由拋物線與y軸的交點判斷c與2的關(guān)系,然后根據(jù)對稱軸判定b與2的關(guān)系以及2a+b=2;當(dāng)x=﹣1時,y=a﹣b+c;然后由圖象確定當(dāng)x取何值時,y>2.【題目詳解】①∵對稱軸在y軸右側(cè),∴a、b異號,∴ab<2,故正確;②∵對稱軸∴2a+b=2;故正確;③∵2a+b=2,∴b=﹣2a,∵當(dāng)x=﹣1時,y=a﹣b+c<2,∴a﹣(﹣2a)+c=3a+c<2,故錯誤;④根據(jù)圖示知,當(dāng)m=1時,有最大值;當(dāng)m≠1時,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m為實數(shù)).故正確.⑤如圖,當(dāng)﹣1<x<3時,y不只是大于2.故錯誤.故選A.【題目點撥】本題主要考查了二次函數(shù)圖象與系數(shù)的關(guān)系,關(guān)鍵是熟練掌握①二次項系數(shù)a決定拋物線的開口方向,當(dāng)a>2時,拋物線向上開口;當(dāng)a<2時,拋物線向下開口;②一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當(dāng)a與b同號時(即ab>2),對稱軸在y軸左;當(dāng)a與b異號時(即ab<2),對稱軸在y軸右.(簡稱:左同右異)③常數(shù)項c決定拋物線與y軸交點,拋物線與y軸交于(2,c).7、D【分析】根據(jù)一元二次方程的解的定義,把x=1代入方程得到關(guān)于k的一次方程1﹣5+k=0,然后解一次方程即可.【題目詳解】解:把x=1代入方程得1+k﹣5=0,解得k=1.故選:D.【題目點撥】本題考查一元二次方程的解.熟記一元二次方程解得定義是解決此題的關(guān)鍵.8、C【解題分析】試題解析:A.“購買1張彩票就中獎”是不可能事件,錯誤;B.“概率為0.0001的事件”是不可能事件,錯誤;C.“任意畫一個三角形,它的內(nèi)角和等于180°”是必然事件,正確;D.任意擲一枚質(zhì)地均勻的硬幣10次,正面向上的一定是5次,錯誤.故選C.9、C【分析】設(shè)BC=x,可得AC=2x,Rt△ABC中利用勾股定理算出AB=x,然后利用三角函數(shù)在直角三角形中的定義,可算出sinA的值.【題目詳解】解:由AC=2BC,設(shè)BC=x,則AC=2x,

∵Rt△ABC中,∠C=90°,

∴根據(jù)勾股定理,得AB=.

因此,sinA=.

故選:C.【題目點撥】本題已知直角三角形的兩條直角邊的關(guān)系,求角A的正弦之值.著重考查了勾股定理、三角函數(shù)的定義等知識,屬于基礎(chǔ)題.10、C【解題分析】試題分析:A、對角線相等的平行四邊形是矩形,所以A選項錯誤;B、對角線互相垂直的平行四邊形是菱形,所以B選項錯誤;C、對角線互相垂直平分且相等的四邊形是正方形,所以C選項正確;D、一組對邊相等且平行的四邊形是平行四邊形,所以D選項錯誤.故選C.考點:命題與定理.二、填空題(每小題3分,共24分)11、【分析】先求出平移后的拋物線的頂點坐標(biāo),再利用頂點式,寫出拋物線解析式,即可.【題目詳解】由題意知:拋物線的頂點坐標(biāo)是(0,1).∵拋物線向左平移3個單位∴頂點坐標(biāo)變?yōu)椋?3,1).∴得到的拋物線關(guān)系式是.故答案為.【題目點撥】本題主要考查了二次函數(shù)圖像與幾何變換,正確掌握二次函數(shù)圖像與幾何變換是解題的關(guān)鍵.12、1或2【分析】設(shè)BP=x,則PC=3-x,根據(jù)平行線的性質(zhì)可得∠B=90°,根據(jù)同角的余角相等可得∠CDP=∠APB,即可證明△CDP∽△BPA,根據(jù)相似三角形的性質(zhì)列方程求出x的值即可得答案.【題目詳解】設(shè)BP=x,則PC=3-x,∵AB∥CD,∠C=90°,∴∠B=180°-∠C=90°,∴∠B=∠C,∵AP⊥DP,∴∠APB+∠DPC=90°,∵∠CDP+∠DPC=90°,∴∠CDP=∠APB,∴△CDP∽△BPA,∴,∵AB=1,CD=2,BC=3,∴,解得:x1=1,x2=2,∴BP的長為1或2,故答案為:1或2【題目點撥】此題考查的是相似三角形的判定及性質(zhì),掌握相似三角形的對應(yīng)邊成比例列方程是解題的關(guān)鍵.13、(0,-1)【分析】在平面直角坐標(biāo)系中畫出圖形,根據(jù)已知條件列出方程并求解,從而確定點關(guān)于點中心對稱的點的坐標(biāo).【題目詳解】解:連接并延長到點,使,設(shè),過作軸于點,如圖:在和中∴∴,∵,∴,∴,∴故答案是:【題目點撥】本題考查了一個點關(guān)于某個點對稱的點的坐標(biāo),關(guān)鍵在于掌握點的坐標(biāo)的變化規(guī)律.14、④⑥①②③⑤【分析】根據(jù)中心投影的性質(zhì),找到是燈光的光源即可判斷出中心投影;再利用平行光下的投影屬于平行投影可判斷出平行投影.【題目詳解】解:①②③⑤都是燈光下的投影,屬于中心投影;④因為太陽光屬于平行光線,所以日晷屬于平行投影;⑥中是平行光線下的投影,屬于平行投影,故答案為:④⑥;①②③⑤.【題目點撥】此題主要考查了中心投影和平行投影的性質(zhì),解題的關(guān)鍵是根據(jù)平行投影和中心投影的區(qū)別進行解答即可.15、﹣1【分析】函數(shù)的對稱軸為:x=-1,由拋物線與x軸交點是關(guān)于對稱軸的對稱即可得到答案.【題目詳解】解:函數(shù)的對稱軸為:x=-1,其中一個交點坐標(biāo)為(1,0),

則另外一個交點坐標(biāo)為(-1,0),

故答案為-1.【題目點撥】本題考查了拋物線與x軸的交點,根據(jù)函數(shù)的對稱性即可求解.16、10.5【解題分析】先證△AEB∽△ABC,再利用相似的性質(zhì)即可求出答案.【題目詳解】解:由題可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.5(m).故答案為10.5.【題目點撥】本題考查了相似的判定和性質(zhì).利用相似的性質(zhì)列出含所求邊的比例式是解題的關(guān)鍵.17、1【分析】易得△AOB∽△ECD,利用相似三角形對應(yīng)邊的比相等可得旗桿OA的長度.【題目詳解】解:∵OA⊥DA,CE⊥DA,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠CDA=∠OBA,∴△AOB∽△ECD,∴,解得OA=1.故答案為1.18、【分析】隨機抽取一名學(xué)生總共有20+23=43種情況,其中是男生的有20種情況.利用概率公式進行求解即可.【題目詳解】解:一共有20+23=43人,即共有43種情況,∴抽到一名男生的概率是.【題目點撥】本題考查了用列舉法求概率,屬于簡單題,熟悉概率的計算公式是解題關(guān)鍵.三、解答題(共66分)19、(1);(2);(3)7或1.【分析】(1)先證△DEC為等腰直角三角形,求出,再通過平行線分線段成比例的性質(zhì)可直接寫出的值;(2)證△BCE∽△ACD,由相似三角形的性質(zhì)可求出的值;(3)分兩種情況討論,一種是點E在線段BA的延長線上,一種是點E在線段BA上,可分別通過勾股定理求出AE的長,即可寫出線段BE的長.【題目詳解】(1)∵∠BAC=90°,AB=AC,∴△ABC為等腰直角三角形,∠B=45°.∵DE∥AB,∴∠DEC=∠B=45°,∠CDE=∠A=90°,∴△DEC為等腰直角三角形,∴cos∠C.∵DE∥AB,∴.故答案為:;(2)由(1)知,△BAC和△CDE均為等腰直角三角形,∴.又∵∠BCE=∠ACD=α,∴△BCE∽△ACD,∴,即;(3)①如圖3﹣1,當(dāng)點E在線段BA的延長線上時.∵∠BAC=90°,∴∠CAE=90°,∴AE3,∴BE=BA+AE=4+3=7;②如圖3﹣2,當(dāng)點E在線段BA上時,AE3,∴BE=BA﹣AE=4﹣3=1.綜上所述:BE的長為7或1.故答案為:7或1.【題目點撥】本題考查了等腰直角三角形的性質(zhì),銳角三角函數(shù),相似三角形的判定與性質(zhì)等,解答本題的關(guān)鍵是注意分類討論思想在解題過程中的運用.20、見解析【分析】根據(jù)方程的系數(shù)結(jié)合根的判別式,可得出△=(t-3)2≥1,由此可證出:對于任意實數(shù)t,方程都有實數(shù)根.【題目詳解】證明:△=[-(t﹣1)]2﹣4×1×(t﹣2)=t2﹣6t+9=(t﹣3)2,∴對于任意實數(shù)t,都有(t﹣3)2≥1,∴方程都有實數(shù)根.【題目點撥】本題考查了根的判別式,解題的關(guān)鍵是:牢記“當(dāng)△≥1時,方程有實數(shù)根”.21、(1)證明見解析;(2)證明見解析.【分析】(1)連接GE,根據(jù)正方形的性質(zhì)和平行線的性質(zhì)得到∠AEG=∠CGE,根據(jù)菱形的性質(zhì)和平行線的性質(zhì)得到∠HEG=∠FGE,解答即可;(2)證明Rt△HAE≌Rt△GDH,得到∠AHE=∠DGH,證明∠GHE=90°,根據(jù)正方形的判定定理證明.【題目詳解】解:(1)連接GE,∵AB∥CD,∴∠AEG=∠CGE,∵GF∥HE,∴∠HEG=∠FGE,∴∠HEA=∠CGF;(2)∵四邊形ABCD是正方形,∴∠D=∠A=90°,∵四邊形EFGH是菱形,∴HG=HE,在Rt△HAE和Rt△GDH中,∴Rt△HAE≌Rt△GDH(HL),∴∠AHE=∠DGH,又∠DHG+∠DGH=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH為正方形.【題目點撥】本題考查的是正方形的性質(zhì)、菱形的性質(zhì)、全等三角形的判定和性質(zhì),正確作出輔助線、靈活運用相關(guān)的性質(zhì)定理和判定定理是解題的關(guān)鍵.22、(1);(2)①,;②,.【分析】(1)先利用相似三角形性質(zhì)求得∽,并利用相似比即可求的長;(2)①由題意分點在線段上,點在射線上,利用相似三角形性質(zhì)進行分析求值;②利用三角函數(shù)以及等腰三角形性質(zhì)綜合進行分析討論.【題目詳解】解:(1)∵,,∴∽∴∵,∴∴(2)①()點在線段上∵,∴為的中點∵為的中點∴∵,∴∴是的中位線∴()點在射線上∵為的中點,∴由(1)可得∽∴,∴∵,∴∴∽∴∴綜上所述:的長為,②由上問可得,∽∴∵∴∵,∴∴∽為等腰三角形,則為等腰三角形.()時在延長線上,不符合題意,舍去()(),則點與點重合綜上所述:的長為,【題目點撥】本題考查幾何圖形的綜合問題,熟練利用相似三角形相關(guān)性質(zhì)以及結(jié)合等腰三角形和三角函數(shù)進行分析討論.23、不等式組的解集為﹣1<x<2,不等式組的整數(shù)解為0、1.【分析】先分別求出兩個一元一次不等式的解,再根據(jù)求不等式組解的方法求出不等式組的解,繼而可求出其整數(shù)解.【題目詳解】解:解不等式x+1>0,得:x>﹣1,解不等式x+4>3x,得:x<2,則不等式組的解集為﹣1<x<2,所以不等式組的整數(shù)解為0、1.【題目點撥】本題考查的知識點是解不等式組,正確求出每個一元一次不等式的解是求不等式組的解的關(guān)鍵.24、(1)見解析;(2)-2【分析】(1)連接AO并延長至,使,同理作出點B,C的對應(yīng)點,再順次連接即可;(2)先根據(jù)圖象找出三點的坐標(biāo),再利用正切函數(shù)的定義求解即可.【題目詳解】(1)如圖;(2)根據(jù)題意可得出,,,設(shè)與x軸的夾角為,∴.【題目點撥】本題考查的知識點是在坐標(biāo)系中畫位似圖形,掌握位似圖形的關(guān)于概念是解此題的關(guān)鍵.25、(1);(2)【分析】(1)直接利用概率公式求解;(2)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出兩次摸出都是紅球的結(jié)果數(shù),然后根據(jù)概率公式求解.【題目詳解】解:(1)任意摸出一球是白球的概率=;(2)畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中兩次摸出都是紅球的結(jié)果數(shù)為6,∴兩次摸出都是紅球的概率==.【題目點撥】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.26、(1)y=-x2+2x+3;(2)F(,);(3)n=,T(0,-)或n=-,T(0,).【分析】(1)用待定系數(shù)法求解即可;(2)作FH⊥AD,過點F作FM⊥x軸,交AD與M,易知當(dāng)S△FAD最大時,點F到直線AD距離FH最大,求出直線AD的解析式,設(shè)F(t,-t2+2t+3),M(t,t+1),表示出△FAD的面積,然后利用二次函數(shù)的性質(zhì)求解即可;(3)分AP為對角線和AM為對角線兩種情況求解即可.【題目詳解】解:(1)∵拋物線x軸相交于點A(-1,0),B(3,0),∴設(shè)該拋物線對應(yīng)的二次函數(shù)關(guān)系式為y=a(x+1)(x-3),∵點D(2,3)在拋物線上,∴3=a×(2+1)×(2-3),∴3=-3a,∴a=-1,∴y=-(x+1)(x-3),即y=-x2+

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論