版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
《八年級上冊》第十一章三角形11.2.2三角形的外角《八年級上冊》第十一章三角形11.2.2三角形的外角足球比賽中的數(shù)學(xué)知識
在綠茵場上,小羅在E處受到阻擋需要傳球,請幫助作出選擇,應(yīng)傳給在B處的球員還是C處的球員,其射門不易射偏。(不考慮其他因素)ADBCABCD●EABCDE足球比賽中的數(shù)學(xué)知識
在綠茵場上,ABCD探索概念若把△ABC的一邊BC延長,得到∠ACD.這個角還是三角形的內(nèi)角嗎?如圖,△ABC的三個內(nèi)角是什么?它們有什么關(guān)系?三角形的一邊與另一邊的延長線組成的角,叫做三角形的外角.外角特征:(1).頂點在三角形的一個頂點上.(2).一條邊是三角形的一邊.(3).另一條邊是三角形某條邊的延長線.
ABCD探索概念若把△ABC的一邊BC延長,得到∠ACD.這三角形共有__個外角。ABC6畫圖并思考:每個頂點處有_____個外角,它們是______角。研究有關(guān)外角的問題時,通常每個頂點處取一個外角.321CAB三角形共有__個外角。ABC6畫圖并思考:每個頂點處有__
已知∠A=60°∠B=50°則∠1=___°∠2=___°
探一探?ABCD21ABCD12已知∠A=30°∠B=40°則∠1=___°∠2=___°7011011070
根據(jù)以上結(jié)果,你能找到三角形外角與內(nèi)角之間的關(guān)系嗎?請大膽寫出來!已知∠A=60°∠B=50°則∠1=___°∠2=__外角三角形外角∠ACD與內(nèi)角有什么關(guān)系?相鄰的內(nèi)角不相鄰的內(nèi)角(1)∠ACD與∠ACB.(2)∠ACD與∠A、∠B探索性質(zhì)ACBD三角形的一個外角與它相鄰的內(nèi)角互補.外角三角形外角∠ACD與內(nèi)角有什么關(guān)系?相鄰的內(nèi)角不相鄰的內(nèi)BDACE∵∠ACD=180°-∠ACB又∠A+∠B=180°-∠ACB∴∠ACD=∠A+∠B證法1:證法2:過C點作CE∥AB∴∠ACE=∠A,∠ECD=∠B∴∠ACD=∠ACE+∠ECD=∠A+∠B探索性質(zhì)即∠ACD=∠A+∠B三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和BDACE∵∠ACD=180°-∠ACB又∠A+∠B=180BDACE探索性質(zhì)(2)∠ACD與∠A、∠B∠ACD
∠A∠ACD
∠B>>三角形的一個外角大于與它不相鄰的任何一個內(nèi)角.填寫不等號:BDACE探索性質(zhì)(2)∠ACD與∠A、∠B∠ACD
顯然,三角形的一個外角與它相鄰的內(nèi)角
;推論1:三角形的一個外角等于與它
____________;推論2:三角形的一個外角大于與它_____________。三角形的外角與內(nèi)角的關(guān)系:探索性質(zhì)BDAC不相鄰的任何一個內(nèi)角.不相鄰的兩個內(nèi)角的和互補數(shù)學(xué)符號語言∵∠ACD是△ABC的外角∴∠ACD=∠A+∠B.∴
∠ACD>∠A,∠ACD>∠B;顯然,三角形的一個外角與它相鄰的內(nèi)角;三ABC123方法1方法2三角形的外角和定理:三角形的外角和等于360°∠1+∠2
+∠3
=?有哪些方法證明這個結(jié)果議一議ABC123方法1方法2三角形的外角和定理:∠1+∠2+∠例1、如圖,∠4,∠5,∠6是△ABC的三個外角,它們的和是多少?解法1:∵∠4=∠2+∠3,∠5=∠1+∠3,∠6=∠1+∠2,∴∠4+∠5+∠6=(∠2+∠3)+(∠1+∠3)+(∠1+∠2)=2(∠1+∠2+∠3).
=2×180°=360°.654132CAB1例題示范例1、如圖,∠4,∠5,∠6是△ABC的三個外角,解法1解法2:∵∠4+∠1=180°,∠5+∠2=180°,∠6+∠3=180°,∴∠4+∠5+∠6+∠1+∠2+∠3=540°.
∵∠1+∠2+∠3=180°∴∠4+∠5+∠6=540°-180°=360°.例1、如圖,∠4,∠5,∠6是△ABC的三個外角,它們的和是多少?例題示范(三角形的一個外角與它相鄰的內(nèi)角互補)654132CAB1解法2:例1、如圖,∠4,∠5,∠6是△ABC的三個外角解:過A作AD平行于BC∠3=∠4BC1234A∠2=∠BAD所以,∠1+∠2+∠3=∠1+∠4+∠BAD=360°兩直線平行,同位角相等D解法3:解:過A作AD平行于BC∠3=∠4BC1234A∠2=∠ABC123方法1方法2繞圈:三角形的外角和等于360°議一議ABC123方法1方法2繞圈:三角形的外角和等于360°議一∠C∠3∠DAC∠41、如圖,口答:(1)∠1=
+
;(2)∠2=
+
.BACD1234課堂練習(xí)3、如圖,說出圖形中∠1和∠2的度數(shù):(1)(2)(3)11122260°80°30°40°40°2PABCD12、右圖,∠1是三角形______的外角,∠2是三角形_______的外角.∠C∠3∠DAC∠41、如圖,口答:BACD1234課堂練習(xí)4、如圖,AB//CD,∠A=37°,∠F=26°,那么∠C=()FABECDA.26°B.63°C.37°D.60°ABOCD5、如圖,AB//CD,AD、BC相交于O點,若∠A=35°,∠BOD=76°,則∠C的度數(shù)是()A.31°B.35°C.41°D.76°課堂練習(xí)4、如圖,AB//CD,∠A=37°,∠F=26°,那么∠40oABDC6、如圖,D是△ABC的BC邊上一點,∠B=∠BAD,∠ADC=80°,∠BAC=70°.求:(1)∠B的度數(shù);(2)∠C的度數(shù).課堂練習(xí)40oABDC6、如圖,D是△ABC的BC邊上一點,∠B本節(jié)課
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024裝修合同范本版
- 個人倉庫租賃協(xié)議樣本
- 小學(xué)食堂食品供應(yīng)合同
- 2024年冷鏈車運輸合同
- 校企合作框架協(xié)議書范例
- 2024售樓處物業(yè)服務(wù)合同(物業(yè))
- 2024英文股份合同范本英文股份合同
- 2024個人裝修房屋合同范本
- 2024《鋁合金門窗合同》
- 機動車輛交易協(xié)議文本
- 2024-2025學(xué)年八年級語文上冊期末專項復(fù)習(xí):綜合性學(xué)習(xí)+口語交際【考題猜想】原卷版
- 逐夢芳華-吉林省松原市前郭爾羅斯蒙古族自治縣南部學(xué)區(qū)三校2024-2025學(xué)年九年級上學(xué)期11月期中道德與法治試題(含答案)
- 四川省成都市九縣區(qū)2024-2025學(xué)年高一上學(xué)期期中考試數(shù)學(xué)試題(含答案)
- 2024秋國開《四史通講》期末大作業(yè)試題B答案(第1套)
- 2024年8月CCAA國家注冊審核員《管理體系認(rèn)證基礎(chǔ)》考試題目含解析
- 2024新版(北京版)三年級英語上冊單詞帶音標(biāo)
- 戶外廣告安裝施工方案
- 鈉離子電池低成本硬碳負(fù)極關(guān)鍵技術(shù)開發(fā)-2024-10-技術(shù)資料
- 2025屆廣東省珠海市紫荊中學(xué)高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析
- 期中測試卷(1-3單元)(試題)2024-2025學(xué)年六年級上冊數(shù)學(xué)蘇教版
- 現(xiàn)代農(nóng)業(yè)課件教學(xué)課件
評論
0/150
提交評論