2024屆山東省日照莒縣聯(lián)考數(shù)學九上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
2024屆山東省日照莒縣聯(lián)考數(shù)學九上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
2024屆山東省日照莒縣聯(lián)考數(shù)學九上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
2024屆山東省日照莒縣聯(lián)考數(shù)學九上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
2024屆山東省日照莒縣聯(lián)考數(shù)學九上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆山東省日照莒縣聯(lián)考數(shù)學九上期末學業(yè)質(zhì)量監(jiān)測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.如圖,已知圓錐側(cè)面展開圖的扇形面積為65cm2,扇形的弧長為10cm,則圓錐母線長是()A.5cm B.10cm C.12cm D.13cm2.如圖,l1∥l2∥l3,直線a,b與l1,l2,l3分別相交于點A、B、C和點D、E、F,若,DE=4,則DF的長是()A. B. C.10 D.63.如圖所示,已知為的直徑,直線為圓的一條切線,在圓周上有一點,且使得,連接,則的大小為()A. B. C. D.4.如圖,AB與CD相交于點E,點F在線段BC上,且AC//EF//DB,若BE=5,BF=3,AE=BC,則的值為()A. B. C. D.5.若關于x的一元二次方程x2﹣2x+a﹣1=0沒有實數(shù)根,則a的取值范圍是()A.a(chǎn)<2 B.a(chǎn)>2 C.a(chǎn)<﹣2 D.a(chǎn)>﹣26.如圖,∠AOB是放置在正方形網(wǎng)格中的一個角,則tan∠AOB()A. B. C.1 D.7.如圖,的外接圓的半徑是.若,則的長為()A. B. C. D.8.已知函數(shù)y=(k-1)x2-4x+4的圖象與x軸只有一個交點,則k的取值范圍是()A.k≤2且k≠1 B.k<2且k≠1C.k=2 D.k=2或19.如圖,在平面直角坐標系中,直線與x軸交于點A,與y軸交于點B,點C是AB的中點,∠ECD繞點C按順時針旋轉(zhuǎn),且∠ECD=45°,∠ECD的一邊CE交y軸于點F,開始時另一邊CD經(jīng)過點O,點G坐標為(-2,0),當∠ECD旋轉(zhuǎn)過程中,射線CD與x軸的交點由點O到點G的過程中,則經(jīng)過點B、C、F三點的圓的圓心所經(jīng)過的路徑長為()A. B. C. D.10.已知是關于的一元二次方程的兩個根,且滿足,則的值為()A.2 B. C.1 D.二、填空題(每小題3分,共24分)11.拋物線的對稱軸是________.12.計算:sin30°+tan45°=_____.13.方程的根是___________.14.在△ABC中,∠B=45°,cosA=,則∠C的度數(shù)是_____.15.點關于原點對稱的點為_____.16.如圖,已知的面積為48,將沿平移到,使和重合,連結(jié)交于,則的面積為__________.17.如圖在平面直角坐標系中,若干個半徑為個單位長度、圓心角為的扇形組成一條連續(xù)的曲線,點從原點出發(fā),沿這條曲線向右上下起伏運動,點在直線上的速度為每秒2個單位,在弧線上的速度為每秒個單位長度,則秒時,點的坐標是_______;秒時,點的坐標是_______.18.75°的圓心角所對的弧長是2.5cm,則此弧所在圓的半徑是_____cm.三、解答題(共66分)19.(10分)解方程:(1)x2+4x﹣5=0(2)x(2x+3)=4x+620.(6分)某校為了解七、八年級學生對“防溺水”安全知識的掌握情況,從七、八年級各隨機抽取50名學生進行測試,并對成績(百分制)進行整理、描述和分析.部分信息如下:a.七年級成績頻數(shù)分布直方圖:b.七年級成績在這一組的是:7072747576767777777879c.七、八年級成績的平均數(shù)、中位數(shù)如下:年級平均數(shù)中位數(shù)七76.9m八79.279.5根據(jù)以上信息,回答下列問題:(1)在這次測試中,七年級在80分以上(含80分)的有人;(2)表中m的值為;(3)在這次測試中,七年級學生甲與八年級學生乙的成績都是78分,請判斷兩位學生在各自年級的排名誰更靠前,并說明理由;(4)該校七年級學生有400人,假設全部參加此次測試,請估計七年級成績超過平均數(shù)76.9分的人數(shù).21.(6分)(1)已知如圖1,在中,,,點在內(nèi)部,點在外部,滿足,且.求證:.(2)已知如圖2,在等邊內(nèi)有一點,滿足,,,求的度數(shù).22.(8分)對任意一個三位數(shù),如果滿足各數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“相異數(shù)”.將一個“相異數(shù)”任意兩個數(shù)位上的數(shù)字對調(diào)后可以得到三個不同的新三位數(shù),把這三個新三位數(shù)的和與111的商記為.例如,對調(diào)百位與十位上的數(shù)字得到213,對調(diào)百位與個位上的數(shù)字得到321,對調(diào)十位與個位上的數(shù)字得到132,這三個新三位數(shù)的和,,所以.(1)計算:,;(2)小明在計算時發(fā)現(xiàn)幾個結(jié)果都為正整數(shù),小明猜想所有的均為正整數(shù),你覺得這個猜想正確嗎?請判斷并說明理由;(3)若,都是“相異數(shù)”,其中,(,,、都是正整數(shù)),當時,求的最大值.23.(8分)如圖,AB是⊙O的直徑,點C是的中點,連接AC并延長至點D,使CD=AC,點E是OB上一點,且,CE的延長線交DB的延長線于點F,AF交⊙O于點H,連接BH.(1)求證:BD是⊙O的切線;(2)當OB=2時,求BH的長.24.(8分)如圖,?ABCD中,點E,F(xiàn)分別是BC和AD邊上的點,AE垂直平分BF,交BF于點P,連接EF,PD.(1)求證:平行四邊形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.25.(10分)西安市某中學數(shù)學興趣小組在開展“保護環(huán)境,愛護樹木”的活動中,利用課外時間測量一棵古樹的高,由于樹的周圍有水池,同學們在低于樹基3.3米的一平壩內(nèi)(如圖).測得樹頂A的仰角∠ACB=60°,沿直線BC后退6米到點D,又測得樹頂A的仰角∠ADB=45°.若測角儀DE高1.3米,求這棵樹的高AM.(結(jié)果保留兩位小數(shù),≈1.732)26.(10分)小明和小亮利用三張卡片做游戲,卡片上分別寫有A,B,B.這些卡片除字母外完全相同,從中隨機摸出一張,記下字母后放回,充分洗勻后,再從中摸出一張,如果兩次摸到卡片字母相同則小明勝,否則小亮勝,這個游戲?qū)﹄p方公平嗎?請說明現(xiàn)由.

參考答案一、選擇題(每小題3分,共30分)1、D【解題分析】∴選D2、C【解題分析】試題解析:又DE=4,∴EF=6,∴DF=DE+EF=10,故選C.3、C【分析】連接OB,由題意可知,△COB是等邊三角形,即可求得∠C,再由三角形內(nèi)角和求得∠BAC,最后根據(jù)切線的性質(zhì)和余角的定義解答即可.【題目詳解】解:如圖:連接OB∵為的直徑∴∠ACB=90°又∵AO=OC∴OB=AC=OC∴OC=OB=BC∴△COB是等邊三角形∴∠C=60°∴∠BAC=90°-∠C=30°又∵直線為圓的一條切線∴∠CAP=90°∴=∠CAP-∠BAC=60°故答案為C.【題目點撥】本題主要考查了圓的性質(zhì)、等邊三角形以及切線的性質(zhì)等知識點,根據(jù)題意說明△COB是等邊三角形是解答本題的關鍵.4、A【分析】根據(jù)平行線分線段成比例定理得可求出BC的長,從而可得CF的長,再根據(jù)平行線分線段成比例定理得,求解即可得.【題目詳解】又,解得又故選:A.【題目點撥】本題考查了平行線分線段成比例定理,根據(jù)定理求出BC的長是解題關鍵.5、B【分析】根據(jù)題意得根的判別式,即可得出關于的一元一次不等式,解之即可得出結(jié)論.【題目詳解】∵,,,由題意可知:,∴a>2,故選:B.【題目點撥】本題考查了一元二次方程(a≠0)的根的判別式:當,方程有兩個不相等的實數(shù)根;當,方程有兩個相等的實數(shù)根;當,方程沒有實數(shù)根.6、C【分析】連接AB,分別利用勾股定理求出△AOB的各邊邊長,再利用勾股定理逆定理求得△ABO是直角三角形,再求tan∠AOB的值即可.【題目詳解】解:連接AB如圖,利用勾股定理得,,∵,,∴∴利用勾股定理逆定理得,△AOB是直角三角形∴tan∠AOB==故選C【題目點撥】本題考查了在正方形網(wǎng)格中,勾股定理及勾股定理逆定理的應用.7、A【分析】由題意連接OA、OB,根據(jù)圓周角定理求出∠AOB,利用勾股定理進行計算即可.【題目詳解】解:連接OA、OB,由圓周角定理得:∠AOB=2∠C=90°,所以的長為.故選:A.【題目點撥】本題考查的是三角形的外接圓和外心的概念和性質(zhì),掌握圓周角定理和勾股定理是解題的關鍵.8、D【分析】當k+1=0時,函數(shù)為一次函數(shù)必與x軸有一個交點;當k+1≠0時,函數(shù)為二次函數(shù),根據(jù)條件可知其判別式為0,可求得k的值.【題目詳解】當k-1=0,即k=1時,函數(shù)為y=-4x+4,與x軸只有一個交點;當k-1≠0,即k≠1時,由函數(shù)與x軸只有一個交點可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,綜上可知k的值為1或2,故選D.【題目點撥】本題主要考查函數(shù)與x軸的交點,掌握二次函數(shù)與x軸只有一個交點的條件是解題的關鍵,解決本題時注意考慮一次函數(shù)和二次函數(shù)兩種情況.9、A【解題分析】先確定點B、A、C的坐標,①當點G在點O時,點F的坐標為(0,2),此時點F、B、C三點的圓心為BC的中點,坐標為(1,3);②當直線OD過點G時,利用相似求出點F的坐標,根據(jù)圓心在弦的垂直平分線上確定圓心在線段BC的垂直平分線上,故縱坐標為,利用兩點間的距離公式求得圓心的坐標,由此可求圓心所走的路徑的長度.【題目詳解】∵直線與x軸交于點A,與y軸交于點B,∴B(0,4),A(4,0),∵點C是AB的中點,∴C(2,2),①當點G在點O時,點F的坐標為(0,2),此時點F、B、C三點的圓心為BC的中點,坐標為(1,3);②當直線OD過點G時,如圖,連接CN,OC,則CN=ON=2,∴OC=,∵G(-2,0),∴直線GC的解析式為:,∴直線GC與y軸交點M(0,1),過點M作MH⊥OC,∵∠MOH=45,∴MH=OH=,∴CH=OC-OH=,∵∠NCO=∠FCG=45,∴∠FCN=∠MCH,又∵∠FNC=∠MHC,∴△FNC∽△MHC,∴,即,得FN=,∴F(,0),此時過點F、B、C三點的圓心在BF的垂直平分線上,設圓心坐標為(x,),則,解得,當∠ECD旋轉(zhuǎn)過程中,射線CD與x軸的交點由點O到點G的過程中,則經(jīng)過點B、C、F三點的圓的圓心所經(jīng)過的路徑為線段,即由BC的中點到點(,),∴所經(jīng)過的路徑長=.故選:A.【題目點撥】此題是一道綜合題,考查一次函數(shù)的性質(zhì),待定系數(shù)法求函數(shù)的解析式,相似三角形的判定及性質(zhì)定理,兩點間的距離公式,綜合性比較強,做題時需時時變換思想來解題.10、B【分析】根據(jù)根與系數(shù)的關系,即韋達定理可得,易求,從而可得,解可求,再利用根的判別式求出符合題意的.【題目詳解】由題意可得,a=1,b=k,c=-1,∵滿足,∴①根據(jù)韋達定理②把②式代入①式,可得:k=-2故選B.【題目點撥】此題主要考查了根與系數(shù)的關系,將根與系數(shù)的關系與代數(shù)式變形相結(jié)合進行解題.二、填空題(每小題3分,共24分)11、【分析】根據(jù)二次函數(shù)y=ax2+bx+c(a≠0)的對稱軸是直線x=?計算.【題目詳解】拋物線y=2x2+24x?7的對稱軸是:x=?=?1,故答案為:x=?1.【題目點撥】本題考查的是二次函數(shù)的性質(zhì),掌握二次函數(shù)y=ax2+bx+c(a≠0)的對稱軸是直線x=?是解題的關鍵.12、【題目詳解】解:sin30°+tan45°=【題目點撥】此題主要考察學生對特殊角的三角函數(shù)值的記憶30°、45°、60°角的各個三角函數(shù)值,必須正確、熟練地進行記憶.13、,.【解題分析】試題分析:,∴,∴,.故答案為,.考點:解一元二次方程-因式分解法.14、75°【解題分析】已知在△ABC中°,cosA=,可得∠A=60°,又因∠B=45,根據(jù)三角形的內(nèi)角和定理可得∠C=75°.15、【分析】根據(jù)平面直角坐標系中,關于原點的對稱點的坐標變化規(guī)律,即可得到答案.【題目詳解】∵平面直角坐標系中,關于原點的對稱點的橫縱坐標分別互為相反數(shù),∴點關于原點對稱點的坐標為.故答案是:.【題目點撥】本題主要考查平面直角坐標系中,關于原點的對稱點的坐標變化規(guī)律,掌握關于原點的對稱點的橫縱坐標分別互為相反數(shù),是解題的關鍵.16、24【解題分析】根據(jù)平移變換只改變圖形的位置,不改變圖形的形狀與大小,可得∠B=∠A′CC′,BC=B′C′,再根據(jù)同位角相等,兩直線平行可得CD∥

AB,然后求出CD=AB,點C"到A′B′的距離等于點C到AB的距離,根據(jù)等高的三角形的面積的比等于底邊的比即可求解.也可用相似三角形的面積比等于相似比的平方來求.【題目詳解】解:根據(jù)題意得

∠B=∠A′CC′,BC=B′C′,

∴CD//AB,CD=AB(三角形的中位線),

點C′到A′C′的距離等于點C到AB的距離,∴△CDC′的面積=△ABC的面積,=×48

=24

故答案為:24【題目點撥】本題考查的是三角形面積的求法之一,等高的三角形的面積比等于底的比,也可用相似三角形的面積比等于相似比的平方來求得.17、【分析】設第n秒時P的位置為Pn,P5可直接求出,根據(jù)點的運動規(guī)律找出規(guī)律,每4秒回x軸,P4n(4n,0),由2019=504×4+3,回到在P3的位置上,過P3作P3B⊥x軸于B,則OB=3,P3B=,P3(3,-),當t=2019時,OP2019=OP2016+OB,此時P2019點縱坐標與P3縱坐標相同,即可求.【題目詳解】設n秒時P的位置為Pn,過P5作P5A⊥x軸于A,OP4=OP2+P2P4=4,P4(4,0),當t=5時,由扇形知P4P5=2,OP4=4,在Rt△P4P5A中,∠P5P4A=60o,則∠P4P5A=90o-∠P5P4A=60o=30o,P4A=P4P5=1,由勾股定理得PA=,OA=OP4+AP4=5,由點P在第一象限,P(5,),通過圖形中每秒后P的位置發(fā)現(xiàn),每4秒一循環(huán),2019=504×4+3,回到相對在P3的位置上,過P3作P3B⊥x軸于B,則OB=3,P3B=,由P3在第四象限,則P3(3,-),當t=2019時,OP2019=OP2016+OB=4×504+3=2019,P2019點縱坐標與P3縱坐標相同,此時P2019坐標為(2019,-),秒時,點的坐標是(2019,-).故答案為:(5,),(2019,-).【題目點撥】本題考查規(guī)律中點P的坐標問題關鍵讀懂題中的含義,利用點運動的速度,考查直線與弧線的時間,發(fā)現(xiàn)都用1秒,而每4秒就回到x軸上,由此發(fā)現(xiàn)規(guī)律便可解決問題.18、1【分析】由弧長公式:計算.【題目詳解】解:由題意得:圓的半徑.故本題答案為:1.【題目點撥】本題考查了弧長公式.三、解答題(共66分)19、(1)x1=-5,x2=1;(2)x1=-1.5,x2=2【分析】(1)根據(jù)因式分解法即可求解;(2)根據(jù)因式分解法即可求解.【題目詳解】解:(1)x2+4x-5=0因式分解得,(x+5)(x-1)=0則,x+5=0或者x-1=0∴x1=-5,x2=1(2)x(2x+3)=4x+6提公因式得,x(2x+3)=2(2x+3)移項得,x(2x+3)-2(2x+3)=0則,(2x+3)(x-2)=0∴2x+3=0或者x-2=0∴x1=-1.5,x2=2.【題目點撥】此題主要考查一元二次方程的求解,解題的關鍵是熟知因式分解法解方程.20、(1)23(2)77.5(3)甲學生在該年級的排名更靠前(4)224【分析】(1)根據(jù)條形圖及成績在這一組的數(shù)據(jù)可得;(2)根據(jù)中位數(shù)的定義求解可得;(3)將各自成績與該年級的中位數(shù)比較可得答案;(4)用總?cè)藬?shù)乘以樣本中七年級成績超過平均數(shù)76.9分的人數(shù)所占比例可得.【題目詳解】解:(1)在這次測試中,七年級在80分以上(含80分)的有人,故答案為23;(2)七年級50人成績的中位數(shù)是第25、26個數(shù)據(jù)的平均數(shù),而第25、26個數(shù)據(jù)分別為78、79,,故答案為77.5;(3)甲學生在該年級的排名更靠前,七年級學生甲的成績大于中位數(shù)78分,其名次在該班25名之前,八年級學生乙的成績小于中位數(shù)78分,其名次在該班25名之后,甲學生在該年級的排名更靠前.(4)估計七年級成績超過平均數(shù)76.9分的人數(shù)為(人).【題目點撥】本題主要考查頻數(shù)分布直方圖、中位數(shù)及樣本估計總體,解題的關鍵是根據(jù)直方圖得出解題所需數(shù)據(jù)及中位數(shù)的定義和意義、樣本估計總體思想的運用.21、(1)詳見解析;(2)150°【分析】(1)先證∠ABD=∠CBE,根據(jù)SAS可證△ABD≌△CBE;(2)把線段PC以點C為中心順時針旋轉(zhuǎn)60°到線段CQ處,連結(jié)AQ.根據(jù)旋轉(zhuǎn)性質(zhì)得△PCQ是等邊三角形,根據(jù)等邊三角形性質(zhì)證△BCP≌△ACQ(SAS),得BP=AQ=4,∠BPC=∠AQC,根據(jù)勾股定理逆定理可得∠AQP=90°,進一步推出∠BPC=∠AQC=∠AQP+∠PQC=90°+60°.【題目詳解】(1)證明:∵∠ABC=90°,BD⊥BE∴∠ABC=∠DBE=90°即∠ABD+∠DBC=∠DBC+∠CBE∴∠ABD=∠CBE.又∵AB=CB,BD=BE∴△ABD≌△CBE(SAS).(2)如圖,把線段PC以點C為中心順時針旋轉(zhuǎn)60°到線段CQ處,連結(jié)AQ.由旋轉(zhuǎn)知識可得:∠PCQ=60°,CP=CQ=1,∴△PCQ是等邊三角形,∴CP=CQ=PQ=1.又∵△ABC是等邊三角形,∴∠ACB=60°=∠PCQ,BC=AC,∴∠BCP+∠PCA=∠PCA+∠ACQ,即∠BCP=∠ACQ.在△BCP與△ACQ中∴△BCP≌△ACQ(SAS)∴BP=AQ=4,∠BPC=∠AQC.又∵PA=5,∴.∴∠AQP=90°又∵△PCQ是等邊三角形,∴∠PQC=60°∴∠BPC=∠AQC=∠AQP+∠PQC=90°+60°=150°∴∠BPC=150°.【題目點撥】考核知識點:等邊三角形,全等三角形,旋轉(zhuǎn),勾股定理.根據(jù)旋轉(zhuǎn)性質(zhì)和全等三角形判定和性質(zhì)求出邊和角的關系是關鍵.22、(1)10;12.(2)猜想正確.理由見解析;(3).【分析】(1)根據(jù)“相異數(shù)”的定義即可求解;(2)設的三個數(shù)位數(shù)字分別為,,,根據(jù)“相異數(shù)”的定義列出即可求解;(3)根據(jù),都是“相異數(shù)”,得到,,根據(jù)求出x,y的值即可求解.【題目詳解】(1);.(2)猜想正確.設的三個數(shù)位數(shù)字分別為,,,即,.因為,,均為正整數(shù),所以任意為正整數(shù).(3)∵,都是“相異數(shù)”,∴;.∵,∴,∴,∵,,且,都是正整數(shù),∴或或或,∵是“相異數(shù)”,∴;∵是“相異數(shù)”,∴,∴滿足條件的有,或,或,∴或或,∴的最大值為.【題目點撥】本題考查因式分解的應用;理解題意,從題目中獲取信息,列出正確的代數(shù)式,再由數(shù)的特點求解是解題的關鍵.23、(1)證明見解析;(2)BH=.【分析】(1)先判斷出∠AOC=90°,再判斷出OC∥BD,即可得出結(jié)論;(2)先利用相似三角形求出BF,進而利用勾股定理求出AF,最后利用面積即可得出結(jié)論.【題目詳解】(1)連接OC,∵AB是⊙O的直徑,點C是的中點,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位線,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵點B在⊙O上,∴BD是⊙O的切線;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根據(jù)勾股定理得,AF=5,∵S△ABF=AB?BF=AF?BH,∴AB?BF=AF?BH,∴4×3=5BH,∴BH=.【題目點撥】此題主要考查了切線的判定和性質(zhì),三角形中位線的判定和性質(zhì),相似三角形的判定和性質(zhì),求出BF=3是解本題的關鍵.24、(1)詳見解析;(2)tan∠ADP=35【解題分析】(1)根據(jù)線段垂直平分線的性質(zhì)和平行四邊形的性質(zhì)即可得到結(jié)論;(2)作PH⊥AD于H,根據(jù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論