計算機仿真技術試卷_第1頁
計算機仿真技術試卷_第2頁
計算機仿真技術試卷_第3頁
計算機仿真技術試卷_第4頁
計算機仿真技術試卷_第5頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、 控制系統(tǒng)的分析與設計方法可以分為時域法、頻域法。2、 根據仿真時間與系統(tǒng)實際時鐘的關系,控制系統(tǒng)仿真可以分為實時仿真、亞實時仿真、超實時仿真。3、 判斷系統(tǒng)穩(wěn)定性的方法主要有利用極點判斷穩(wěn)定性、利用特征值判斷系統(tǒng)穩(wěn)定性、利用李雅普洛夫第二法判斷系統(tǒng)穩(wěn)定性。4、 常用的離散化方法主要有簡單替換法、雙線性變換法、零階或一階保持器法。5、 根據采樣周期的選擇不同,采樣控制系統(tǒng)仿真可以分為同步采樣、異步采樣。6、 增量式PID控制器的表達式為u(k)=u(k一1)+k(e(k)一e(k-1))+ke(k)+k(e(k)一2e(k-1)+e(k-2))。p i dY(z) 5z-i+z-27、已知系統(tǒng)脈沖傳遞函數(shù)為G(滬吋=z-2z-i+4z-2,則該系統(tǒng)的差分方程為y(k)=2y(k一2)一4y(k一3)+5u(k一2)+u(k一3)。8、已知系統(tǒng)的狀態(tài)方程為敗=1一,則該系統(tǒng)是否穩(wěn)定是(填是或否),其特2—2征值為s1,21、 簡述計算機仿真的基本步驟。答:(1)根據仿真目的確定仿真方案;(2)建立系統(tǒng)的數(shù)學模型;(3)選擇合適仿真方法,建立仿真模型;(4)編寫仿真程序并進行程序調試;(5)進行仿真實驗;(6)仿真結果分析。2、 試比較數(shù)值積分法與離散相似法的區(qū)別。答:數(shù)值積分法:比較成熟,精度較高,計算公式復雜,計算量大,適合離線仿真;離散相似法:計算公式簡單,計算量小,速度快,精度較數(shù)值積分法低,適合在線仿真3、 已知系統(tǒng)結構圖如下圖所示,1、2、3、4、5為典型環(huán)節(jié),a為常數(shù),試寫出其連接矩陣W、W0、Wc(10分)+yr4a++-*■1*+yr4a++-*■1*2*5*3解:

y=X5所以:u=r一aXu「000—a0_X丁1411y=X5所以:u=r一aXu「000—a0_X丁1411u=Xu10000X02122<u=X,從而:U=u=01000X+03233u=X+Xu10100X041344u=X+Xu10010X051451——151— —1由圖可知rx1x2=lo000「000—a0「丁10000001000,W=00100100100100W=,X4X5wc01]4、已知系統(tǒng)狀態(tài)空間表達式為u(t)X(0)=計算步長h=0.1,輸入信號u=1(t>0)試采用歐拉法,四階龍格一庫塔法計算/=h時對應的y值。(12分)丁「10「丁,A=,B=1120解:X(0)=,C=10]歐拉法:X(h)=X(0)+f((0,X(0)))h+(+(AX(0)+Bu(0))h1(「10_(「10_「1「+「「-11210丿+-0.111y(h)=CX(h)=1.21.2四階龍格-庫塔法:1.3四階龍格-庫塔法:「10「「1「+丁「2「12103K=f(0,X(0))=

(0.10.1)(0.1°0.1)K_f0+ ,X(0)+-KK_f0+ ,X(0)+-K2I221丿31222丿「10](「1]0.1「2]「1]「2.1]「10](「1]0.1「2.1]「1]「2.105]+-+__+-+_12v123丿03.412v123.4丿03.445K二f(0+0.1,X(0)+0.1-K)43「10](「1]+0.1-「2.105]+「1]「2.2105]12v1_3.445_丿_0__3.8995_X(h)二X(0)+-(K+2K+2K+K)=1.21031.3432y(h)1.21031.3432y(h)=CX(h)=1.2103Y(s) 25、已知系統(tǒng)傳遞函數(shù)G(s)=U(S)=時),試采用雙線性變換法求解系統(tǒng)差分方程,計算步長h=0.1s(10分)。2z一1解:把雙線性變換公式s= 待入系統(tǒng)傳遞函數(shù):hz+122z-1(2z-1 +1hz+1vhz+1丿h2z2+2h2z+h2(h(h+2)z2-4z+2-h反z變換得系統(tǒng)差分方程為:0.01+0.02z-i+0.01z-22.1-4z-1+1.9z-20.0048+0.0095z-1+0.0048z-2_Y(z)1-1.9048z-i+0.9048z-2 U(zjy(k)_1.9048y(k-1)-0.9048y(k-2)+0.0048u(k)+0.0095u(k-1)+0.0048u(k-2)「&(t「&(t)]「01]「x(t)]「2]1_1+x(t)2一5一6x(t)20三、程序編制題(共37分)1、已知線性定常系統(tǒng)的狀態(tài)空間表達式為u(t)x(t)1x(t)2初始狀態(tài)為零,試分別采用歐拉法和四階龍格-庫塔法編寫仿真程序求解系統(tǒng)的單位階躍響應解:歐拉法程序如下:A=[0l;-5-6];B=[2;0];C=[1;2];Tf=input(‘仿真時間Tf=');h=input(‘計算步長h=');X=zeros(size(A,1),1);y=0;t=0; r=1;fori=1:Tf/hX=X+h*(A*X+B*r);y=[y,C*X];t=[t,t(i)+h];endplot(t,y);四階龍格一庫塔法程序如下:A=[01;-5-6];B=[2;0];C=[1;2];Tf=input(‘仿真時間Tf=');h=input(‘計算步長h=');X=zeros(size(A,1),1);y=0;t=0; r=1;fori=1:Tf/hK1=A*X+B*r;K2=A*(X+h*K1/2)+B*r;K3=A*(X+h*K2/2)+B*r;K4=A*(X+h*K3)+B*r;X=X+h*(K1+2*K2+2*K3+K4)/6;y=[y,C*X];t=[t,t(i)+h];endplot(t,y);2、已知某系統(tǒng)結構圖如下:試編寫程序求:(12分)(1)判斷系統(tǒng)穩(wěn)定性;(2)求解系統(tǒng)單位階躍響應、最大超調量和上升時間解:程序清單如下:[n1,d1]=series(1,[1,1],1,[1,2]);[n2,d2]=series(n1,d1,2,[1,3]);[num,den]=cloop(n2,d2);P=roots(den);i=find(real(P)>0);n=length(i);ifn>0disp(‘系統(tǒng)不穩(wěn)定');elsedisp(‘系統(tǒng)穩(wěn)定');endt=0:0.1:10;[y,x,t]=step(num,den,t);plot(t,y);[M,lab]=max(y);M=(M-1)/1*100;disp([‘最大超調量M='num2str(M)‘%']);[Val,lab1]=min(abs(y(1:lab)-1));Tr=t(lab1);disp([‘上升時間tr='num2str(tr)]);3、設被控對象為:G(s)= 一-,系統(tǒng)為單位負反饋,采用為增量式PID控制器。s2+5s+6試編寫仿真程序求解系統(tǒng)單位階躍響應。(假設系統(tǒng)為同步采樣,PID參數(shù)采用input語句輸入)(12分)解:程序清單如下:clearallT=0.01;Kp=input(‘Kp=');Ti=input(‘Ti=');Td=input(‘Td=');Tf=input(‘仿真時間Tf=');a1=Kp;a2=Kp*T/Ti;a3=Kp*Td/T;[numc,denc]=cloop(40,[1,30,1]);[A,B,C,D]=tf2ss(numc,denc);[G,H,C,D]=c2dm(A,B,C,D,T,'zoh');u_1=0;e=0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論