版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第2講立體幾何解答題第一部分:重難點(diǎn)題型突破突破一:異面直線夾角的向量求法突破二:已知線線角求其它量突破三:線面角的向量求法突破四:已知線面角求其它量突破五:面面角向量求法突破六:已知面面角求其它量突破七:點(diǎn)到平面距離突破八:空間角的最值問題第二部分:沖刺重難點(diǎn)特訓(xùn)第一部分:重難點(diǎn)題型突破突破一:異面直線夾角的向量求法1.(2022·廣東惠州·高二階段練習(xí))如圖所示,三棱柱SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,N是AB中點(diǎn).(1)若點(diǎn)M是棱SKIPIF1<0所在直線上的點(diǎn),設(shè)SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),求實(shí)數(shù)SKIPIF1<0的值;(2)求異面直線CB與SKIPIF1<0所成角的余弦值.2.(2022·上海·格致中學(xué)高二階段練習(xí))如圖,正方體SKIPIF1<0的棱長為2,SKIPIF1<0分別是SKIPIF1<0的中點(diǎn).(1)求證:點(diǎn)SKIPIF1<0四點(diǎn)共面;(2)求異面直線SKIPIF1<0與SKIPIF1<0所成的角.3.(2022·上海·高二專題練習(xí))如圖,已知SKIPIF1<0是底面為正方形的長方體,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),(1)求證:直線SKIPIF1<0平面SKIPIF1<0;(2)求異面直線SKIPIF1<0與SKIPIF1<0所成角的余弦值.4.(2022·福建泉州·高二期中)如圖,在平行六面體SKIPIF1<0中,以頂點(diǎn)SKIPIF1<0為端點(diǎn)的三條棱長都是1,且它們彼此的夾角都是60°,SKIPIF1<0為SKIPIF1<0與SKIPIF1<0的交點(diǎn).若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)用SKIPIF1<0,SKIPIF1<0,SKIPIF1<0表示SKIPIF1<0;(2)求對角線SKIPIF1<0的長;(3)求異面直線SKIPIF1<0與SKIPIF1<0夾角的余弦值.5.(2022·遼寧·大連市第三十六中學(xué)高二期中)如圖,在四棱錐SKIPIF1<0中,SKIPIF1<0底面SKIPIF1<0,底面四邊形SKIPIF1<0為菱形且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn).(1)證明:直線SKIPIF1<0平面SKIPIF1<0;(2)求異面直線SKIPIF1<0與SKIPIF1<0所成角的余弦值;突破二:已知線線角求其它量1.(2022·黑龍江·哈爾濱市第四中學(xué)校高二階段練習(xí))已知直三棱柱ABC-A1B1C1中,側(cè)面AA1B1B為正方形,AB=BC=2,且SKIPIF1<0,E,F(xiàn)分別為AC和CC1的中點(diǎn),D為棱SKIPIF1<0上的點(diǎn).(1)證明:SKIPIF1<0;(2)在棱A1B1上是否存在一點(diǎn)M,使得異面直線MF與AC所成的角為30°?若存在,指出M的位置;若不存在,說明理由.2.(2022·廣東·廣州市協(xié)和中學(xué)高二階段練習(xí))如圖,空間直角坐標(biāo)系中,四棱錐SKIPIF1<0的底面是邊長為SKIPIF1<0的正方形,底面OABC在xOy平面內(nèi),且拋物線Q:SKIPIF1<0經(jīng)過O、A、C三點(diǎn).點(diǎn)B在y軸正半軸上,SKIPIF1<0平面OABC,側(cè)棱OP與底面所成角為SKIPIF1<0.(1)求m的值;(2)若SKIPIF1<0是拋物線Q上的動(dòng)點(diǎn),M是棱OP上的一個(gè)定點(diǎn),它到平面OABC的距離為SKIPIF1<0,寫出M、N兩點(diǎn)之間的距離SKIPIF1<0,并求SKIPIF1<0的最小值;(3)是否存在一個(gè)實(shí)數(shù)SKIPIF1<0,使得當(dāng)SKIPIF1<0取得最小值時(shí),異面直線MN與OB互相垂直?請說明理由.3.(2022·上海奉賢區(qū)致遠(yuǎn)高級中學(xué)高二期中)如圖1,在△ABC中,D,E分別為AB,AC的中點(diǎn),O為DE的中點(diǎn),AB=AC=SKIPIF1<0,BC=4.將△ADE沿DE折起到△A1DE的位置,使得平面A1DE⊥平面BCED,如圖2.(1)求證:A1O⊥BD;(2)求直線A1C和平面A1BD所成角的正弦值;(3)線段A1C上是否存在點(diǎn)F,使得直線DF和BC所成角的余弦值為SKIPIF1<0?若存在,求出SKIPIF1<0的值;若不存在,說明理由.4.(2022·遼寧·建平縣實(shí)驗(yàn)中學(xué)高二期中)如圖①,平面四邊形SKIPIF1<0由直角梯形SKIPIF1<0和SKIPIF1<0組成,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.如圖②,沿著直線SKIPIF1<0將直角梯形SKIPIF1<0折起至點(diǎn)SKIPIF1<0和點(diǎn)SKIPIF1<0重合,點(diǎn)SKIPIF1<0和點(diǎn)SKIPIF1<0重合,使得二面角SKIPIF1<0的大小為SKIPIF1<0.(1)求點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離;(2)若點(diǎn)SKIPIF1<0是線段SKIPIF1<0上的動(dòng)點(diǎn),是否存在點(diǎn)SKIPIF1<0,使得平面SKIPIF1<0與平面SKIPIF1<0的夾角的余弦值為SKIPIF1<0?若存在,求出SKIPIF1<0的長度;若不存在,請說明理由.5.(2022·全國·高二課時(shí)練習(xí))如圖,已知正方形SKIPIF1<0和矩形SKIPIF1<0所在平面互相垂直,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是線段SKIPIF1<0的中點(diǎn).(1)求證:SKIPIF1<0平面SKIPIF1<0;(2)試在線段SKIPIF1<0上確定一點(diǎn)SKIPIF1<0,使SKIPIF1<0與SKIPIF1<0所成角是60°.6.(2022·湖北武漢·高二階段練習(xí))如圖,在四棱錐SKIPIF1<0中,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)證明:SKIPIF1<0;(2)求平面SKIPIF1<0與平面SKIPIF1<0夾角的余弦值;(3)設(shè)SKIPIF1<0為棱SKIPIF1<0上的點(diǎn),滿足異面直線SKIPIF1<0與SKIPIF1<0所成的角為SKIPIF1<0,求SKIPIF1<0的長.突破三:線面角的向量求法1.(2022·北京·海淀教師進(jìn)修學(xué)校附屬實(shí)驗(yàn)學(xué)校高二階段練習(xí))如圖,在四棱錐P—ABCD中,PD⊥底面ABCD,四邊形ABCD為正方形,SKIPIF1<0,E,F(xiàn)分別是AD,PB的中點(diǎn).(1)證明:EFSKIPIF1<0平面PCD;(2)求直線PA與平面CEF所成角的度數(shù).2.(2022·重慶市育才中學(xué)高三階段練習(xí))已知正方形SKIPIF1<0的邊長為2,點(diǎn)SKIPIF1<0分別是邊SKIPIF1<0的中點(diǎn),沿著SKIPIF1<0將SKIPIF1<0,折起,使得點(diǎn)SKIPIF1<0重合為一點(diǎn)SKIPIF1<0,得到一個(gè)三棱錐SKIPIF1<0,點(diǎn)SKIPIF1<0分別是線段SKIPIF1<0的中點(diǎn),在折起后的圖形中:(1)求證:平面SKIPIF1<0平面SKIPIF1<0;(2)求直線SKIPIF1<0與平面SKIPIF1<0所成角的余弦值.3.(2022·湖北·咸豐春暉學(xué)校高二階段練習(xí))如圖,在四棱錐SKIPIF1<0中,SKIPIF1<0平面ABCD,PD=4,底面SKIPIF1<0是邊長為2的正方形,SKIPIF1<0分別為SKIPIF1<0的中點(diǎn).(1)求證:平面SKIPIF1<0平面SKIPIF1<0;(2)求直線SKIPIF1<0與平面SKIPIF1<0所成角的余弦值.4.(2022·江西·高二階段練習(xí))在斜三棱柱SKIPIF1<0中,點(diǎn)SKIPIF1<0在底面SKIPIF1<0的射影為邊SKIPIF1<0的中點(diǎn),SKIPIF1<0為正三角形,側(cè)面SKIPIF1<0與底面SKIPIF1<0所成角的正切值為2,(1)證明:SKIPIF1<0;(2)求直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值.5.(2022·山東棗莊·高二期中)四棱錐SKIPIF1<0底面為平行四邊形,且SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0.(1)在棱SKIPIF1<0上是否存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0平面SKIPIF1<0.若存在,確定SKIPIF1<0點(diǎn)位置;若不存在,說明理由.(2)求直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值.突破四:已知線面角求其它量1.(2022·新疆·伊寧縣第二中學(xué)高二期中(理))已知正方形的邊長為4,E、F分別為AD、BC的中點(diǎn),以EF為棱將正方形ABCD折成如圖所示的60°的二面角,點(diǎn)M在線段AB上.(1)若M為AB的中點(diǎn),且直線MF與由A,D,E三點(diǎn)所確定平面的交點(diǎn)為O,試確定點(diǎn)O的位置,并證明直線OD∥平面EMC;(2)是否存在點(diǎn)M,使得直線DE與平面EMC所成的角為60°?若存在,求線段AM的長,若不存在,請說明理由.2.(2022·江蘇·南京田家炳高級中學(xué)高二期中)如圖,在三棱柱ABC-A1B1C1中,AB⊥側(cè)面BB1C1C,已知∠BCC1=SKIPIF1<0,BC=1,AB=C1C=2,E是棱C1C的中點(diǎn).(1)求二面角A—EB1—A1的余弦值;(2)在棱CA上是否存在一點(diǎn)M,使得EM與平面A1B1E所成角的正弦值為SKIPIF1<0?若存在,求出SKIPIF1<0的值;若不存在,請說明理由.3.(2022·天津·塘沽二中高二期中)如圖,在四棱柱SKIPIF1<0中,側(cè)棱SKIPIF1<0⊥底面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn).(1)求平面SKIPIF1<0與平面SKIPIF1<0夾角的正弦值;(2)設(shè)點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,且直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值是SKIPIF1<0,求線段SKIPIF1<0的長.4.(2022·廣東·惠來縣第一中學(xué)高二期中)已知四棱錐SKIPIF1<0中,底面SKIPIF1<0是矩形,且SKIPIF1<0,SKIPIF1<0是正三角形,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0分別是SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的中點(diǎn).(1)求平面SKIPIF1<0與平面SKIPIF1<0所成角的大小;(2)線段SKIPIF1<0上是否存在點(diǎn)SKIPIF1<0,使得直線SKIPIF1<0與平面SKIPIF1<0所成角的大小為SKIPIF1<0,若存在,求出SKIPIF1<0的值;若不存在,說明理由.5.(2022·河北衡水中學(xué)高三階段練習(xí))如圖,在四棱錐SKIPIF1<0中,已知四邊形SKIPIF1<0是邊長為SKIPIF1<0的正方形,點(diǎn)SKIPIF1<0在底面SKIPIF1<0上的射影為底面SKIPIF1<0的中心SKIPIF1<0,點(diǎn)SKIPIF1<0在棱SKIPIF1<0上,且SKIPIF1<0的面積為1.(1)若點(diǎn)SKIPIF1<0是SKIPIF1<0的中點(diǎn),證明:平面SKIPIF1<0平面SKIPIF1<0;(2)在棱SKIPIF1<0上是否存在一點(diǎn)SKIPIF1<0,使得直線SKIPIF1<0與平面SKIPIF1<0所成的角的正弦值為SKIPIF1<0?若存在,求出點(diǎn)SKIPIF1<0的位置;若不存在,說明理由.6.(2022·河南·高二階段練習(xí)(理))如圖,四棱錐SKIPIF1<0的底面SKIPIF1<0是矩形,SKIPIF1<0底面SKIPIF1<0,點(diǎn)SKIPIF1<0分別在SKIPIF1<0上,且SKIPIF1<0.(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)若直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為SKIPIF1<0,求SKIPIF1<0.7.(2022·北京市陳經(jīng)綸中學(xué)高二期中)如圖,在四棱錐SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0,點(diǎn)SKIPIF1<0在棱SKIPIF1<0上,點(diǎn)SKIPIF1<0為SKIPIF1<0中點(diǎn).(1)證明:若SKIPIF1<0,則直線SKIPIF1<0平面SKIPIF1<0;(2)求平面SKIPIF1<0與平面SKIPIF1<0夾角的余弦值;(3)是否存在點(diǎn)SKIPIF1<0,使SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為SKIPIF1<0?若存在,試求出SKIPIF1<0的值;若不存在,請說明理由.突破五:面面角向量求法1.(2022·山西·晉城市第二中學(xué)校高二階段練習(xí))如圖,在四棱錐P—ABCD中,四邊形ABCD是菱形.SKIPIF1<0,SKIPIF1<0,點(diǎn)E是棱PC的中點(diǎn).(1)證明:PC⊥BD.(2)求平面PAB與平面BDE所成角的余弦值.2.(2022·全國·高三專題練習(xí))如圖,SKIPIF1<0是三棱錐SKIPIF1<0的高,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求證:SKIPIF1<0平面SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,求二面角SKIPIF1<0的正弦值.3.(2022·湖北·高二階段練習(xí))如圖1,在梯形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0于SKIPIF1<0,且SKIPIF1<0,將梯形SKIPIF1<0沿SKIPIF1<0折疊成如圖2所示的幾何體,SKIPIF1<0,SKIPIF1<0為直線SKIPIF1<0上一點(diǎn),且SKIPIF1<0于SKIPIF1<0,SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),連接SKIPIF1<0,SKIPIF1<0.(1)證明:SKIPIF1<0;(2)若圖1中,SKIPIF1<0,求當(dāng)四棱錐SKIPIF1<0的體積最大時(shí),平面SKIPIF1<0與平面SKIPIF1<0所成銳角的正弦值.4.(2022·遼寧葫蘆島·高三階段練習(xí))如圖,在四棱錐SKIPIF1<0中,四邊形SKIPIF1<0是矩形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0、SKIPIF1<0分別是SKIPIF1<0、SKIPIF1<0的中點(diǎn).(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)求平面SKIPIF1<0和平面SKIPIF1<0所成角的正弦值.5.(2022·湖南省桃源縣第一中學(xué)高三期中)如圖,在三棱柱SKIPIF1<0中,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,四邊形SKIPIF1<0是邊長為SKIPIF1<0的菱形,SKIPIF1<0.(1)證明:SKIPIF1<0;(2)若SKIPIF1<0,求平面SKIPIF1<0和平面SKIPIF1<0夾角的余弦值.6.(2022·江蘇·南京師大附中高三階段練習(xí))如圖SKIPIF1<0,梯形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,將SKIPIF1<0沿對角線SKIPIF1<0翻折,使點(diǎn)SKIPIF1<0至點(diǎn)SKIPIF1<0,且使平面SKIPIF1<0平面SKIPIF1<0,如圖SKIPIF1<0.(1)求證:SKIPIF1<0;(2)連接SKIPIF1<0,當(dāng)四面體SKIPIF1<0體積最大時(shí),求二面角SKIPIF1<0的大?。?.(2022·江蘇常州·高三階段練習(xí))如圖,SKIPIF1<0為三棱錐SKIPIF1<0的高,SKIPIF1<0,SKIPIF1<0在棱SKIPIF1<0上,且SKIPIF1<0.(1)求證:SKIPIF1<0SKIPIF1<0平面SKIPIF1<0;(2)若SKIPIF1<0,求二面角SKIPIF1<0的正弦值.突破六:已知面面角求其它量1.(2022·河北·涉縣第一中學(xué)高三期中)如圖1,在等腰梯形SKIPIF1<0中,SKIPIF1<0分別是SKIPIF1<0的中點(diǎn),SKIPIF1<0,SKIPIF1<0,將SKIPIF1<0沿著SKIPIF1<0折起,使得點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0重合,平面SKIPIF1<0平面SKIPIF1<0,如圖2.(1)當(dāng)SKIPIF1<0時(shí),證明:SKIPIF1<0平面SKIPIF1<0;(2)若平面SKIPIF1<0與平面SKIPIF1<0夾角的余弦值為SKIPIF1<0,求SKIPIF1<0的值.2.(2022·河北南宮中學(xué)高三階段練習(xí))如圖1,在邊長為4的菱形SKIPIF1<0中,SKIPIF1<0,點(diǎn)SKIPIF1<0分別是邊SKIPIF1<0,SKIPIF1<0的中點(diǎn),SKIPIF1<0.沿SKIPIF1<0將SKIPIF1<0翻折到SKIPIF1<0的位置,連接SKIPIF1<0,得到如圖2所示的五棱錐SKIPIF1<0.(1)在翻折過程中是否總有平面SKIPIF1<0平面SKIPIF1<0?證明你的結(jié)論;(2)當(dāng)四棱錐SKIPIF1<0體積最大時(shí),求點(diǎn)SKIPIF1<0到面SKIPIF1<0的距離;(3)在(2)的條件下,在線段SKIPIF1<0上是否存在一點(diǎn)SKIPIF1<0,使得平面SKIPIF1<0與平面SKIPIF1<0所成角的余弦值為SKIPIF1<0?若存在,試確定點(diǎn)SKIPIF1<0的位置;若不存在,請說明理由.3.(2022·浙江·高二階段練習(xí))如圖1,在四邊形SKIPIF1<0中,SKIPIF1<0.將SKIPIF1<0沿SKIPIF1<0翻折到SKIPIF1<0的位置,使得平面SKIPIF1<0平面SKIPIF1<0,如圖2所示.(1)設(shè)平面SKIPIF1<0與平面SKIPIF1<0的交線為SKIPIF1<0,證明:SKIPIF1<0.(2)若點(diǎn)SKIPIF1<0在線段SKIPIF1<0上(點(diǎn)SKIPIF1<0不與端點(diǎn)重合),平面SKIPIF1<0與平面SKIPIF1<0夾角的正弦值為SKIPIF1<0,求SKIPIF1<0的值.4.(2022·廣東·廣州市第十七中學(xué)高三階段練習(xí))如圖所示,在梯形ABCD中,SKIPIF1<0,四邊形ACFE為矩形,且SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0.(1)求證:SKIPIF1<0平面BCF;(2)點(diǎn)M在線段EF上運(yùn)動(dòng),當(dāng)點(diǎn)M在什么位置時(shí),平面MAB與平面FCB所成的銳二面角的正弦值為SKIPIF1<0.5.(2022·福建省廈門第二中學(xué)高二階段練習(xí))在四棱錐SKIPIF1<0中,底面SKIPIF1<0是正方形,平面SKIPIF1<0底面SKIPIF1<0,SKIPIF1<0,E是SKIPIF1<0的中點(diǎn).(1)求證:SKIPIF1<0面SKIPIF1<0;(2)若SKIPIF1<0,則棱PB上是否存在一點(diǎn)F,使得平面SKIPIF1<0與平面EBD的夾角的余弦值為SKIPIF1<0?若存在,請計(jì)算出SKIPIF1<0的值,若不存在,請說明理由.6.(2022·山西大同·高二期中)如圖,在三棱錐SKIPIF1<0中,側(cè)面SKIPIF1<0是等邊三角形,SKIPIF1<0,SKIPIF1<0.(1)證明:平面SKIPIF1<0平面SKIPIF1<0;(2)若SKIPIF1<0,則在棱SKIPIF1<0上是否存在動(dòng)點(diǎn)SKIPIF1<0,使得平面SKIPIF1<0與平面SKIPIF1<0所成二面角的大小為SKIPIF1<0.7.(2022·四川省遂寧市第二中學(xué)校高三階段練習(xí)(理))如圖,直角梯形SKIPIF1<0中,SKIPIF1<0,點(diǎn)SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0沿著SKIPIF1<0翻折至SKIPIF1<0,點(diǎn)SKIPIF1<0為SKIPIF1<0的中點(diǎn),點(diǎn)SKIPIF1<0在線段SKIPIF1<0上.(1)證明:平面SKIPIF1<0平面SKIPIF1<0;(2)若平面SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0與平面SKIPIF1<0所成的銳二面角為SKIPIF1<0,求SKIPIF1<0的值.突破七:點(diǎn)到平面距離1.(2022·貴州貴陽·高三階段練習(xí)(文))在直棱柱SKIPIF1<0中,點(diǎn)SKIPIF1<0為棱SKIPIF1<0的中點(diǎn),底面SKIPIF1<0為等腰直角三角形,且SKIPIF1<0,SKIPIF1<0.(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)若SKIPIF1<0,求點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離.2.(2022·福建·德化第八中學(xué)高二階段練習(xí))已知:在四棱錐SKIPIF1<0中,底面SKIPIF1<0為正方形,側(cè)棱SKIPIF1<0平面SKIPIF1<0,點(diǎn)SKIPIF1<0為SKIPIF1<0中點(diǎn),SKIPIF1<0.(1)求證:平面SKIPIF1<0平面SKIPIF1<0;(2)求點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離.3.(2022·重慶市永川北山中學(xué)校高二期中)如圖,矩形SKIPIF1<0和梯形SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,過SKIPIF1<0的平面交平面SKIPIF1<0于SKIPIF1<0.(1)求證:SKIPIF1<0;(2)當(dāng)SKIPIF1<0為SKIPIF1<0中點(diǎn)時(shí),求點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離;4.(2022·河南·宜陽縣第一高級中學(xué)高二階段練習(xí))如圖1,已知梯形ABCD中,SKIPIF1<0,E是AB邊的中點(diǎn),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.將SKIPIF1<0沿DE折起,使點(diǎn)A到達(dá)點(diǎn)P的位置,且SKIPIF1<0,如圖2,M,N分別是PD,PB的中點(diǎn).(1)求平面MCN與平面BCDE夾角的余弦值;(2)求點(diǎn)P到平面MCN的距離.5.(2022·福建福州·高二期中)如圖,菱形ABCD中,AB=2,SKIPIF1<0,P為平面ABCD外一點(diǎn),且平面PADSKIPIF1<0平面ABCD,O為AD的中點(diǎn),M為PC的中點(diǎn).(1)求證:SKIPIF1<0平面SKIPIF1<0;(2)若SKIPIF1<0為等邊三角形,求點(diǎn)M到平面PAB的距離.6.(2022·福建南平·高二期中)如圖,四邊形SKIPIF1<0為平行四邊形,點(diǎn)SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0,且SKIPIF1<0.以SKIPIF1<0為折痕把SKIPIF1<0折起,便點(diǎn)SKIPIF1<0到達(dá)點(diǎn)SKIPIF1<0的位置,且SKIPIF1<0.(1)求證:平面SKIPIF1<0平面SKIPIF1<0;(2)若直線SKIPIF1<0與平面SKIPIF1<0所成角的正切值為SKIPIF1<0,求點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離.突破八:空間角的最值問題1.(2022·福建·高三階段練習(xí))四棱錐SKIPIF1<0平面SKIPIF1<0,底面SKIPIF1<0是菱形,SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0.(1)證明:SKIPIF1<0;(2)設(shè)SKIPIF1<0為SKIPIF1<0上的點(diǎn),求SKIPIF1<0與平面SKIPIF1<0所成角的正弦值的最大值.2.(2022·上海市進(jìn)才中學(xué)高二期中)如圖,在四棱錐SKIPIF1<0中,已知SKIPIF1<0平面ABCD,且四邊形ABCD為直角梯形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)證明:SKIPIF1<0;(2)線段CP上是否存在一點(diǎn)M,使得直線AM垂直平面PCD,若存在,求出線段AM的長,若不存在,說明理由;(3)點(diǎn)Q是線段BP上的動(dòng)點(diǎn),當(dāng)直線CQ與DP所成的角最小時(shí),求線段BQ的長.3.(2022·山東濰坊·高二期中)如圖,在三棱柱SKIPIF1<0中,底面是邊長為2的等邊三角形,SKIPIF1<0分別是線段SKIPIF1<0的中點(diǎn),二面角SKIPIF1<0為直二面角.(1)求證:SKIPIF1<0平面SKIPIF1<0;(2)若點(diǎn)SKIPIF1<0為線段SKIPIF1<0上的動(dòng)點(diǎn)(不包括端點(diǎn)),求銳二面角SKIPIF1<0的余弦值的取值范圍.4.(2022·黑龍江齊齊哈爾·高二期中)如圖所示,在四棱錐SKIPIF1<0中,底面SKIPIF1<0為正方形,側(cè)面SKIPIF1<0為正三角形,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0為線段SKIPIF1<0上的點(diǎn).(1)若SKIPIF1<0為線段SKIPIF1<0的中點(diǎn),求證:SKIPIF1<0//平面SKIPIF1<0;(2)當(dāng)SKIPIF1<0時(shí),求平面SKIPIF1<0與平面SKIPIF1<0夾角的余弦值的范圍.5.(2022·山西太原·高二期中)如圖,在四棱椎SKIPIF1<0中,底面SKIPIF1<0為平行四邊形,SKIPIF1<0平面SKIPIF1<0,點(diǎn)SKIPIF1<0分別為SKIPIF1<0的中點(diǎn),且SKIPIF1<0.(1)若SKIPIF1<0,求直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值;(2)若直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值的取值范圍為SKIPIF1<0,求平面SKIPIF1<0與平面SKIPIF1<0的夾角的余弦值的取值范圍.6.(2022·重慶·四川外國語大學(xué)附屬外國語學(xué)校高二期中)如圖①所示,長方形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0是邊SKIPIF1<0靠近點(diǎn)SKIPIF1<0的三等分點(diǎn),將△SKIPIF1<0沿SKIPIF1<0翻折到△SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,得到圖②的四棱錐SKIPIF1<0.(1)求四棱錐SKIPIF1<0的體積的最大值;(2)設(shè)SKIPIF1<0的大小為SKIPIF1<0,若SKIPIF1<0,求平面SKIPIF1<0和平面SKIPIF1<0夾角余弦值的最小值.7.(2022·海南華僑中學(xué)高三階段練習(xí))已知四棱錐SKIPIF1<0的底面ABCD是平行四邊形,側(cè)棱SKIPIF1<0平面ABCD,點(diǎn)M在棱DP上,且SKIPIF1<0,點(diǎn)N是在棱PC上的動(dòng)點(diǎn)(不為端點(diǎn)).(1)若N是棱PC中點(diǎn),完成:(i)畫出SKIPIF1<0的重心G(在圖中作出虛線),并指出點(diǎn)G與線段AN的關(guān)系:(ii)求證:SKIPIF1<0SKIPIF1<0平面AMN;(2)若四邊形ABCD是正方形,且SKIPIF1<0,當(dāng)點(diǎn)N在何處時(shí),直線PA與平面AMN所成角的正弦值取最大值.8.(2022·山東省青島第十七中學(xué)高二期中)如圖,C是以SKIPIF1<0為直徑的圓O上異于A,B的點(diǎn),平面SKIPIF1<0平面SKIPIF1<0為正三角形,E,F(xiàn)分別是SKIPIF1<0上的動(dòng)點(diǎn).(1)求證:SKIPIF1<0;(2)若E,F(xiàn)分別是SKIPIF1<0的中點(diǎn)且異面直線SKIPIF1<0與SKIPIF1<0所成角的正切值為SKIPIF1<0,記平面SKIPIF1<0與平面SKIPIF1<0的交線為直線l,點(diǎn)Q為直線l上動(dòng)點(diǎn),求直線SKIPIF1<0與平面SKIPIF1<0所成角的取值范圍.第二部分:沖刺重難點(diǎn)特訓(xùn)1.(2022·四川·廣安二中模擬預(yù)測(理))在四棱錐SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0與平面SKIPIF1<0所成角SKIPIF1<0,又SKIPIF1<0于SKIPIF1<0,SKIPIF1<0于SKIPIF1<0.(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)求二面角SKIPIF1<0的余弦值.2.(2022·陜西·漢陰縣第二高級中學(xué)一模(理))如圖,已知SKIPIF1<0為圓錐SKIPIF1<0底面的直徑,點(diǎn)C在圓錐底面的圓周上,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0,D是SKIPIF1<0上一點(diǎn),且平面SKIPIF1<0平面SKIPIF1<0.(1)求證:SKIPIF1<0;(2)求二面角SKIPIF1<0的正弦值.3.(2022·吉林·長春吉大附中實(shí)驗(yàn)學(xué)校模擬預(yù)測)在平行四邊形ABCD中,AB=6,BC=4,∠BAD=60°,過點(diǎn)A作CD的垂線交CD的延長線于點(diǎn)E,連接EB交AD于點(diǎn)F,如圖1.將SKIPIF1<0沿AD折起,使得點(diǎn)E到達(dá)點(diǎn)P的位置,如圖2.(1)證明:直線SKIPIF1<0平面BFP;(2)若∠BFP=120°,求點(diǎn)F到平面BCP的距離.4.(2022·河南·馬店第一高級中學(xué)模擬預(yù)測(理))如圖,在長方體SKIPIF1<0中,已知SKIPIF1<0,E為BC中點(diǎn),連接SKIPIF1<0,F(xiàn)為線段SKIPIF1<0上的一點(diǎn),且SKIPIF1<0.(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)求平面SKIPIF1<0與平面SKIPIF1<0所成的銳二面角的余弦值.5.(2022·河南開封·一模(理))如圖,SKIPIF1<0是正三角形,在等腰梯形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.平面SKIPIF1<0平面SKIPIF1<0,M,N分別是SKIPIF1<0,SKIPIF1<0的中點(diǎn),SKIPIF1<0.(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)求二面角SKIPIF1<0的余弦值.6.(2022·江蘇·蘇州中學(xué)模擬預(yù)測)已知三棱錐SKIPIF1<0(如圖一)的平面展開圖(如圖二)中,四邊形SKIPIF1<0為邊長等于SKIPIF1<0的正方形,SKIPIF1<0和SKIPIF1<0均為正三角形,在三棱錐SKIPIF1<0中:(1)證明:平面SKIPIF1<0平面SKIPIF1<0;(2)若點(diǎn)SKIPIF1<0在棱SKIPIF1<0上運(yùn)動(dòng),當(dāng)直線SKIPIF1<0與平面SKIPIF1<0所成的角最大時(shí),求二面角SKIPIF1<0的余弦值.7.(2022·上海松江·一模)已知SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0(1)求證:平面SKIPIF1<0平面SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,求直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值大小.8.(2022·全國·模擬預(yù)測)如圖,在直線三棱柱SKIPIF1<0中,己知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,D為棱AC的中點(diǎn).(1)求證:SKIPIF1<0平面SKIPIF1<0;(2)若三棱錐SKIPIF1<0的體積為SKIPIF1<0,求平面SKIPIF1<0與平面SKIPIF1<0夾角的余弦值.9.(2022·浙江·三門縣觀瀾中學(xué)模擬預(yù)測)如圖,在四棱錐SKIPIF1<0中,底面SKIPIF1<0為正方形,點(diǎn)SKIPIF1<0在底面SKIPIF1<0內(nèi)的投影恰為SKIPIF1<0中點(diǎn),且SKIPIF1<0.(1)若SKIPIF1<0,求證:SKIPIF1<0面SKIPIF1<0;(2)若平面SKIPIF1<0與平面SKIPIF1<0所成的銳二面角為SKIPIF1<0,求直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值.10.(2022·貴州貴陽·模擬預(yù)測(理))如圖,在三棱錐SKIPIF1<0中,SKIPIF1<0,且SKIP
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度餐飲企業(yè)外賣配送服務(wù)合同6篇
- 2025年度生物制藥研發(fā)與生產(chǎn)合同模板3篇
- 二零二五年度智能化別墅建造及智能化系統(tǒng)采購合同3篇
- 《養(yǎng)老機(jī)構(gòu)服務(wù)合同》示范文本
- 違法分包對揭陽匯金中心C項(xiàng)目影響評估合同(2025版)3篇
- 2025年網(wǎng)絡(luò)平臺肖像權(quán)授權(quán)使用合同3篇
- 二零二五年度蟲草資源保護(hù)與可持續(xù)利用合同范本3篇
- 2024私人之間的房屋買賣合同樣本
- 2024腳手架工程安全施工與技術(shù)服務(wù)協(xié)議版
- 2025年度智慧城市安全監(jiān)控系統(tǒng)設(shè)備采購合同2篇
- 橫格紙A4打印模板
- CT設(shè)備維保服務(wù)售后服務(wù)方案
- 重癥血液凈化血管通路的建立與應(yīng)用中國專家共識(2023版)
- 兒科課件:急性細(xì)菌性腦膜炎
- 柜類家具結(jié)構(gòu)設(shè)計(jì)課件
- 陶瓷瓷磚企業(yè)(陶瓷廠)全套安全生產(chǎn)操作規(guī)程
- 煤炭運(yùn)輸安全保障措施提升運(yùn)輸安全保障措施
- JTGT-3833-2018-公路工程機(jī)械臺班費(fèi)用定額
- 保安巡邏線路圖
- (完整版)聚乙烯課件
- 建筑垃圾資源化綜合利用項(xiàng)目可行性實(shí)施方案
評論
0/150
提交評論