版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
高考數(shù)學(xué)三輪沖刺卷:解三角形的實際應(yīng)用問題一、選擇題(共20小題;)1.如圖,在河岸AC測量河寬BC時,測量下列四組數(shù)據(jù)較適宜的是?? A.c和α B.c和b C.c和β D.b和α2.在地面上一點A測得一電視塔塔尖的仰角為45°,再向塔底方向前進(jìn)100?m,又測得塔尖的仰角為60 A.237?m B.227?m C.247?3.美國為了加強對伊拉克的控制,進(jìn)行了戰(zhàn)略部署,在位于科威特和沙特的兩個距離32a的軍事基地C和D,測得伊拉克兩支精銳部隊分別在A處和B處,且∠ADB=30°,∠BDC=30° A.64a B.62a4.有一攔水壩的橫斷面是等腰梯形,它的上底長為6?m,下底長為10?m,高為2 A.33,60° B.3,60° C.3,30°5.如圖所示,長為3.5?m的木棒AB斜靠在石堤旁,木棒的一端A在離堤足C處1.4?m的地面上,另一端B在離堤足C處2.8?m的石堤上,石堤的傾斜角為α,則坡度值 A.2315 B.516 C.2316.如圖,一貨輪航行到M處,測得燈塔S在貨輪的北偏東15°,與貨輪相距20n?mile,隨后貨輪沿北偏西30°的方向航行30?min后,于 A.202+ C.206+7.一船向正北航行,看見正西方向有相距10海里的兩個燈塔恰好與它在同一直線上,繼續(xù)航行半小時后,看見一燈塔在船的南偏西60°,另一燈塔在船的南偏西75° A.5海里 B.53海里 C.10海里 D.108.如圖,海平面上的甲船位于中心O的南偏西30°,與O相距15海里的C處.現(xiàn)甲船以35?n?mile/h的速度沿直線CB去營救位于中心O正東方向25?n? A.12?h B.1?h9.甲船在B島的正南A處,AB=10?km,甲船以4?km/h的速度向B島航行,同時,乙船自B島出發(fā)以6?km/h的速度向北偏東 A.1507?min B.15710.某人在C點測得某塔在南偏西80°,塔頂仰角為45°,此人沿南偏東40°方向前進(jìn)10?m到D,測得塔頂A A.15?m B.5?m C.10?11.在△ABC中,a=λ,b=3λ(λ>0),A= A.0 B.1 C.2 D.無數(shù)12.如圖所示,在地面上共線的三點A,B,C處測得一建筑物的仰角分別為30°,45°,60°,且AB=BC=60? A.156?m B.20613.已知D,C,B三點在地面同一直線上,DC=a,從C,D兩點測得A的點仰角分別為α,βα>β,則A點離地面的高AB等于 A.asinαsinβsinα?β14.某人駕駛一艘小游艇位于湖面A處,測得岸邊一座電視塔的塔底在北偏東21°方向,且塔頂?shù)难鼋菫?8°,此人駕駛游艇向正東方向行駛1000米后到達(dá)B處,此時測得塔底位于北偏西39 A.265米 B.279米 C.292米 D.306米15.如圖,塔AB的底部為點B,若C,D兩點相距100?m并且與點B在同一水平線上,現(xiàn)從C,D兩點測得塔頂A的仰角分別為45°和30°,則塔AB的高約為??(精確到0.1?m, A.36.5 B.115.6 C.120.5 D.136.516.在200?m高的山頂上,測得山下一塔的塔頂與塔底的俯角分別是30°和60 A.4003?m B.400317.海上有A,B兩個小島相距10?n?mile,從A島望C島和B島成60°的視角,從B島望C島和A島成75°的視角,則 A.103?n?mile B.18.海上A,B兩個小島相距10海里,從A島望C島和B島成60°的視角,從B島望C島和A島成75°的視角,則B,C A.103海里 B.1063海里 C.519.如圖所示,要測量河對岸A,B兩點間的距離,今沿河岸選取相距40米的C,D兩點,測得∠ACB=60°,∠BCD=45°,∠ADB=60°,∠ADC=30 A.202米 B.203米 C.20620.在塔底的水平面上某點測得塔頂?shù)难鼋菫棣?,由此點向塔底沿直線行走30米,測得塔頂?shù)难鼋菫?θ,再向塔前進(jìn)103米,又測得塔頂?shù)难鼋菫?θ,則塔高為 A.13米 B.14米 C.15米 D.16米二、填空題(共5小題;)21.如圖,AB是豎立在地面上的一根桿子,高為10?m,D為AB的中點,在地面C處測得點B的仰角為45°,則在C處測點D的仰角應(yīng)是多少(精確到 22.在半徑為30?m的圓形廣場中央上空,置一個照明光源,射向地面的光呈圓錐形,且其軸截面頂角為120°,若光源恰好照亮整個廣場,則其高度應(yīng)為
.(精確到23.我國《物權(quán)法》規(guī)定:建造建筑物,不得妨礙相鄰建筑物的通風(fēng)和采光.已知某小區(qū)的住宅樓的底部均在同一水面上,且樓高均為45米,依據(jù)規(guī)定,該小區(qū)內(nèi)住宅樓樓間距應(yīng)不小于52米.若該小區(qū)內(nèi)某居民在距離樓底27米高處的某陽臺觀測點,測得該小區(qū)內(nèi)正對面住宅樓樓頂?shù)难鼋桥c樓底的俯角之和為45°,則該小區(qū)的住宅樓樓間距實際為
24.某海域中有一個小島B(如圖所示),其周圍3.8海里內(nèi)布滿暗礁(3.8海里及以外無暗礁),一大型漁船從該海域A處出發(fā)由西向東直線航行,在A處望見小島B位于北偏東75°,漁船繼續(xù)航行8海里到達(dá)C處,此時望見小島B位于北偏東60°,若漁船不改變航向繼續(xù)前進(jìn),試問漁船有沒有觸礁的危險?答: 25.已知Ax1,y1,Bx2,y2為圓M:x2+y三、解答題(共5小題;)26.某人從某處出發(fā)向正東方向走x千米后,向右轉(zhuǎn)150°,如圖所示,然后向前行走3千米,結(jié)果他與出發(fā)點相距1732米,求x.(結(jié)果精確到1 27.某學(xué)校的平面示意圖為如圖五邊形區(qū)域ABCDE,其中三角形區(qū)域ABE為生活區(qū),四邊形區(qū)域BCDE為教學(xué)區(qū),AB,BC,CD,DE,EA,BE為學(xué)校的主要道路(不考慮寬度).∠BCD=∠CDE=2π3,∠BAE= (1)求道路BE的長度;(2)求生活區(qū)△ABE面積的最大值.28.如圖,某廣場有一塊邊長為1hm的正方形區(qū)域ABCD,在點A處裝有一個可以轉(zhuǎn)動的攝像頭,其能夠捕捉到的圖象的角∠PAQ始終為45°(其中點P,Q分別在邊BC,CD上),設(shè)∠PAB=θ,記 (1)用t表示PQ的長度,并研究△CPQ的周長l是否為定值?(2)問攝像頭能捕捉到正方形ABCD內(nèi)部區(qū)域的面積S至多為多少hm29.如圖,滾珠軸承的內(nèi)外圓半徑分別為r和R.如果在這個滾珠軸承里恰好能放入12顆滾珠,求Rr的值(結(jié)果用sin 30.圖如所示,游客從某旅游景區(qū)的景點A處下山至B處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50?m/min,在甲出發(fā)2?min后,乙從A乘纜車到B,在B處停留1?min后,再從勻速步行到C.假設(shè)纜車勻速直線運動的速度為130?m/min,山路AC長為1260?m (1)求索道AB的長;(2)問乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?(3)為使兩位游客在C處互相等待的時間不超過3分鐘,乙步行的速度應(yīng)該控制在什么范圍內(nèi)?答案1.D 2.A 【解析】設(shè)電視塔塔尖為B,塔底為C,在地面上一點A向塔底方向前進(jìn)100?m到點D,作圖如圖所示,則A=45°在Rt△ABC中,設(shè)BC=x?m,則AC=x?m.在Rt△BCD中,DC=x?1003.A 【解析】因為∠ADC=∠ACD=60°,所以△ADC是等邊三角形.所以在△BDC中,由正弦定理,得BCsin∠BDC=所以在△ABC中,由余弦定理,得AB2=4.B 【解析】如圖所示,橫斷面是等腰梯形ABCD,AB=10?m,CD=6?m,高則AE=AB?CD∴tan∴∠DAE=605.A 【解析】由題意可得,在△ABC中,AB=3.5?m,AC=1.4?m,BC=2.8?m由余弦定理,可得AB2=AC2+BC2?2×AC×BC×6.B 【解析】設(shè)貨輪的速度為v?n?mile/h,由題意,得∠NMS=45°,∠MNS=105°,則∠MSN=30°,又MS=20?n?7.C 8.B 【解析】由題意,得CB因此CB=35n?mile,35÷35=1h,因此甲船到達(dá)9.A 【解析】如圖,設(shè)經(jīng)過x?h時甲船行至P處,乙船行至Q處,且距離為s?在△BPQ中,由余弦定理,知P即s當(dāng)x=?b2a=51410.C 【解析】如圖,設(shè)塔高為?,在Rt△AOC中,∠ACO=45°在Rt△AOD中,∠ADO=30°在△OCD中,∠OCD=120°,由余弦定理得OD即3?2=解得?=10或?=?5(舍).11.A 【解析】由正弦定理知sinB=b?12.D 【解析】設(shè)建筑物的高度為?,由題圖知,PA=2?,PB=2?,所以在△PBA和△PBC中,分別由余弦定理,得cos∠PBA=602+2?2?4因為∠PBA+∠PBC=180°,所以cos∠PBA+由①②③,解得?=306或?=?306(舍去),即建筑物的高度為13.A 14.C 15.D 【解析】設(shè)AB=x,因為∠ACB=45°,所以BC=x,又因為∠ADB=30°,所以16.A 【解析】如圖所示,在?Rt△AOC中,AO=200,∠ACO=∠HAC=60°,所以AC=AOsin60°=20032=17.D 【解析】如圖,C=180由正弦定理可得10sinC=18.D 【解析】根據(jù)題意,畫出示意圖.在△ABC中,A=60°,B=75所以C=45由正弦定理可得ABsin即102所以BC=5619.C 【解析】在△BCD中,可得DB=DC=40(米),在△ACD中,由正弦定理得AD=203又∠ADB=60所以在△ADB中,由余弦定理得AB=20620.C 【解析】由余弦定理求得2θ=3021.26.22.17.3?23.54【解析】如圖,設(shè)該小區(qū)的住宅樓樓間距為CF=t米,則DF=18米,EF=27米,∠DCE=45所以tan∠DCE=即t2解得t=54.24.無【解析】如圖,過B作AC的延長線的垂線,垂足為D.在△ABC中,∠ACB=90°+則∠ABC=180所以△ABC為等腰三角形.AC=BC=8,又∠BCD=90所以BD=BCsin30°25.10?5【解析】由題設(shè)可得:AP=x0因為AP=2所以x0即3x所以9x因為Ax1,y1,B且x1所以9x02所以點P的軌跡為圓x2又3x其幾何意義為圓x2+y2=2又因為圓x2+y2=2d=?10所以圓x2+y2=2所以3x26.1732米或3464米.27.(1)如圖,連接BD,在△BCD中,由余弦定理得:BD所以BD=3因為BC=CD,所以∠CDB=∠CBD=π又因為∠CDE=2所以∠BDE=π所以在Rt△BDE中,BE=
(2)設(shè)∠ABE=α,因為∠BAE=π所以∠AEB=2在△ABE中,由正弦定理,得ABsin所以AB=65sin所以S△ABE因為0<α<2所以π6所以當(dāng)2α?π6=π2,即α=即生活區(qū)△ABE面積的最大值為27328.(1)BP=t,CP=1?t,0≤t≤1,∠DAQ=45°?θ,DQ=所以PQ=C故l=CP+CQ+PQ=1?t+2t所以△CPQ的周長l是定值2.
(2)S=當(dāng)且僅當(dāng)t=2所以攝像頭能捕捉到正方形ABCD內(nèi)部區(qū)域的面積S至多為2?229.設(shè)軸承圓心為O,相鄰兩顆滾珠的圓心分別為P,Q,在等腰三角形POQ中,∠POQ=30
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度荒山農(nóng)業(yè)綜合開發(fā)承包合同4篇
- 2025年度高檔面料產(chǎn)品進(jìn)出口采購合同3篇
- 二零二五年度房屋租賃保險合同4篇
- 二零二五年度智慧農(nóng)業(yè)物聯(lián)網(wǎng)系統(tǒng)合同4篇
- 二零二五年度特色民宿運營管理合作協(xié)議3篇
- 2025年度茶園旅游開發(fā)與生態(tài)保護合作合同4篇
- 2025年度二零二五年度車輛運輸快遞新能源推廣與應(yīng)用合同4篇
- 2025中小學(xué)國際教育合作項目協(xié)議書3篇
- 二零二五年度文化創(chuàng)意產(chǎn)業(yè)園區(qū)開園儀式策劃合同2篇
- 2025年大棚蔬菜種植智能化管理系統(tǒng)集成合同4篇
- 特種設(shè)備行業(yè)團隊建設(shè)工作方案
- 眼內(nèi)炎患者護理查房課件
- 肯德基經(jīng)營策略分析報告總結(jié)
- 買賣合同簽訂和履行風(fēng)險控制
- 中央空調(diào)現(xiàn)場施工技術(shù)總結(jié)(附圖)
- 水質(zhì)-濁度的測定原始記錄
- 數(shù)字美的智慧工業(yè)白皮書-2023.09
- -安規(guī)知識培訓(xùn)
- 2021-2022學(xué)年四川省成都市武侯區(qū)部編版四年級上冊期末考試語文試卷(解析版)
- 污水處理廠設(shè)備安裝施工方案
- 噪聲監(jiān)測記錄表
評論
0/150
提交評論