版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆浙江省嘉興市七校數(shù)學(xué)高一上期末預(yù)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知角終邊上一點,則A. B.C. D.2.在空間四邊形的各邊上的依次取點,若所在直線相交于點,則A.點必在直線上 B.點必在直線上C.點必在平面外 D.點必在平面內(nèi)3.若偶函數(shù)在區(qū)間上是減函數(shù),是銳角三角形的兩個內(nèi)角,且,則下列不等式中正確的是()A. B.C. D.4.要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向左平移個單位長度B.向左平移個單位長度C.向右平移個單位長度D.向右平移個單位長度5.下列說法正確的是A.棱柱被平面分成的兩部分可以都是棱柱 B.底面是矩形的平行六面體是長方體C.棱柱的底面一定是平行四邊形 D.棱錐的底面一定是三角形6.為了得到函數(shù)的圖象,只需將的圖象上的所有點A.橫坐標(biāo)伸長2倍,再向上平移1個單位長度B.橫坐標(biāo)縮短倍,再向上平移1個單位長度C.橫坐標(biāo)伸長2倍,再向下平移1個單位長度D.橫坐標(biāo)縮短倍,再向下平移1個單位長度7.2022年北京冬奧會將于2022年2月4日星期五開幕,2月20日星期日閉幕.北京冬奧會新增7個小項目,女子單人雪車為其中之一.下表是某國女子單人雪車集訓(xùn)隊甲、乙兩位隊員十輪的比賽成績,則下列說法正確的是()隊員比賽成績第一輪第二輪第三輪第四輪第五輪第六輪第七輪第八輪第九輪第十輪甲1分51秒741分51秒721分51秒751分51秒801分51秒901分51秒811分51秒721分51秒941分51秒741分51秒71乙1分51秒701分51秒801分51秒831分51秒831分51秒801分51秒841分51秒901分51秒721分51秒901分51秒91A.估計甲隊員的比賽成績的方差小于乙隊員的比賽成績的方差B.估計甲隊員的比賽成績的中位數(shù)小于乙隊員的比賽成績的平均數(shù)C.估計甲隊員的比賽成績的平均數(shù)大于乙隊員的比賽成績的平均數(shù)D.估計甲隊員的比賽成績的中位數(shù)大于乙隊員的比賽成績的中位數(shù)8.已知a=log23+log2,b=log29-log2,c=log32,則a,b,c的大小關(guān)系是()A.a=b<c B.a=b>cC.a<b<c D.a>b>c9.若,,則的終邊在()A.第一象限 B.第二象限C.第三象限 D.第四象限10.角的終邊過點,則等于A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.下列四個命題中:①若奇函數(shù)在上單調(diào)遞減,則它在上單調(diào)遞增②若偶函數(shù)在上單調(diào)遞減,則它在上單調(diào)遞增;③若函數(shù)為奇函數(shù),那么函數(shù)的圖象關(guān)于點中心對稱;④若函數(shù)為偶函數(shù),那么函數(shù)的圖象關(guān)于直線軸對稱;正確的命題的序號是___________.12.下面四個命題:①定義域上單調(diào)遞增;②若銳角,滿足,則;③是定義在上的偶函數(shù),且在上是增函數(shù),若,則;④函數(shù)的一個對稱中心是;其中真命題的序號為______.13.平面向量,,(R),且與的夾角等于與的夾角,則___.14.設(shè)函數(shù),則________.15.設(shè)函數(shù)f(x)=,則f(-1)+f(1)=______16.函數(shù)f(x)=cos的圖象向右平移個單位長度,得到函數(shù)的圖象,則函數(shù)的解析式為_______,函數(shù)的值域是________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)的部分圖象如圖所示.(1)求的解析式及對稱中心坐標(biāo):(2)先把的圖象向左平移個單位,再向上平移1個單位,得到函數(shù)的圖象,若當(dāng)時,關(guān)于的方程有實數(shù)根,求實數(shù)的取值范圍.18.已知函數(shù),當(dāng)點在的圖像上移動時,點在函數(shù)的圖像上移動,(1)若點的坐標(biāo)為,點也在圖像上,求的值(2)求函數(shù)的解析式(3)當(dāng),令,求在上的最值19.已知函數(shù),為常數(shù).(1)求函數(shù)的最小正周期及對稱中心;(2)若時,的最小值為-2,求的值20.已知函數(shù)f(x)=ax2﹣(4a+1)x+4(a∈R).(1)若關(guān)于x不等式f(x)≥b的解集為{x|1≤x≤2},求實數(shù)a,b的值;(2)解關(guān)于x的不等式f(x)>0.21.計算下列各式的值(1);(2)
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】由題意利用任意角的三角函數(shù)的定義,求得的值【題目詳解】∵角終邊上一點,∴,,,則,故選C【題目點撥】本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題2、B【解題分析】由題意連接EH、FG、BD,則P∈EH且P∈FG,再根據(jù)兩直線分別在平面ABD和BCD內(nèi),根據(jù)公理3則點P一定在兩個平面的交線BD上【題目詳解】如圖:連接EH、FG、BD,∵EH、FG所在直線相交于點P,∴P∈EH且P∈FG,∵EH?平面ABD,F(xiàn)G?平面BCD,∴P∈平面ABD,且P∈平面BCD,由∵平面ABD∩平面BCD=BD,∴P∈BD,故選B【題目點撥】本題考查公理3的應(yīng)用,即根據(jù)此公理證明線共點或點共線問題,必須證明此點是兩個平面的公共點,可有點在線上,而線在面上進(jìn)行證明3、C【解題分析】根據(jù),可得,根據(jù)的單調(diào)性,即可求得結(jié)果.【題目詳解】因為是銳角三角形的兩個內(nèi)角,故可得,即,又因為,故可得;是偶函數(shù),且在單調(diào)遞減,故可得在單調(diào)遞增,故.故選:C.【題目點撥】本題考查由函數(shù)奇偶性判斷函數(shù)的單調(diào)性,涉及余弦函數(shù)的單調(diào)性,屬綜合中檔題.4、D【解題分析】化簡得到,根據(jù)平移公式得到答案.【題目詳解】;故只需向右平移個單位長度故選:【題目點撥】本題考查了三角函數(shù)的平移,意在考查學(xué)生對于三角函數(shù)的變換的理解的掌握情況.5、A【解題分析】對于B.底面是矩形的平行六面體,它的側(cè)面不一定是矩形,故它也不一定是長方體,故B錯;對于C.棱柱的底面是平面多邊形,不一定是平行四邊形,故C錯;對于D.棱錐的底面是平面多邊形,不一定是三角形,故D錯;故選A考點:1.命題的真假;2.空間幾何體的特征6、B【解題分析】由題意利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論【題目詳解】將的圖象上的所有點的橫坐標(biāo)縮短倍(縱坐標(biāo)不變),可得y=3sin2x的圖象;再向上平行移動個單位長度,可得函數(shù)的圖象,故選B【題目點撥】本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,熟記變換規(guī)律是關(guān)鍵,屬于基礎(chǔ)題7、B【解題分析】根據(jù)表格中甲乙成績特征,可去掉成績里面的分和秒后進(jìn)行比較.根據(jù)中位數(shù)、平均數(shù)、方差的計算方法求出中位數(shù)、平均數(shù)、方差比較即可得到答案【題目詳解】根據(jù)表格中甲乙成績特征,可去掉成績里面的分和秒后進(jìn)行比較,作莖葉圖如圖:由圖可知,甲的成績主要集中在70-75之間,乙的成績主要集中在80-90之間,∴甲的成績的平均數(shù)小于乙的成績的平均數(shù),故C錯誤;由圖可知甲的成績中位數(shù)為74.5,乙成績的中位數(shù)為83,故甲隊員的比賽成績的中位數(shù)小于乙隊員的比賽成績的中位數(shù),故D錯誤;甲隊員比賽成績平均數(shù)為:,乙隊員比賽成績平均數(shù)為:,∴甲隊員的比賽成績的中位數(shù)小于乙隊員的比賽成績的平均數(shù),故B正確;甲隊員的比賽成績的方差為:=57.41,乙隊員的比賽成績的方差為:=46.61,∴甲隊員的比賽成績的方差大于乙隊員的比賽成績的方差,故A錯誤故選:B8、B【解題分析】利用對數(shù)的運(yùn)算性質(zhì)求出a、b、c的范圍,即可得到正確答案.【題目詳解】因為a=log23+log2=log2=log23>1,b=log29-log2=log2=a,c=log32<log33=1,所以a=b>c.故選:B9、D【解題分析】根據(jù)同角三角函數(shù)關(guān)系式,化簡,結(jié)合三角函數(shù)在各象限的符號,即可判斷的終邊所在的象限.【題目詳解】根據(jù)同角三角函數(shù)關(guān)系式而所以故的終邊在第四象限故選:D【題目點撥】本題考查了根據(jù)三角函數(shù)符號判斷角所在的象限,屬于基礎(chǔ)題.10、B【解題分析】由三角函數(shù)的定義知,x=-1,y=2,r==,∴sinα==.二、填空題:本大題共6小題,每小題5分,共30分。11、②③【解題分析】根據(jù)奇函數(shù)、偶函數(shù)的性質(zhì)可判斷①②,結(jié)合平移變換可判斷③④.【題目詳解】奇函數(shù)在關(guān)于原點對稱的兩個區(qū)間上具有相同的單調(diào)性,偶函數(shù)在關(guān)于原點對稱的兩個區(qū)間上具有相反的單調(diào)性,故①錯誤,②正確;因為函數(shù)為奇函數(shù),圖象關(guān)于原點對稱,的圖象可以由的圖象向右平移1個單位長度得到,故的圖象關(guān)于點對稱,故③正確;函數(shù)的圖象可以由函數(shù)的圖象向左平移1個單位長度得到,因為為偶函數(shù),圖象關(guān)于y軸對稱,所以的圖象關(guān)于直線軸對稱,故④錯誤.故答案為:②③12、②③④【解題分析】由正切函數(shù)的單調(diào)性,可以判斷①真假;根據(jù)正弦函數(shù)的單調(diào)性,結(jié)合誘導(dǎo)公式,可以判斷②的真假;根據(jù)函數(shù)奇偶性與單調(diào)性的綜合應(yīng)用,可以判斷③的真假;根據(jù)正弦型函數(shù)的對稱性,我們可以判斷④的真假,進(jìn)而得到答案【題目詳解】解:由正切函數(shù)的單調(diào)性可得①“在定義域上單調(diào)遞增”為假命題;若銳角、滿足,即,即,則,故②為真命題;若是定義在上的偶函數(shù),且在上是增函數(shù),則函數(shù)在上為減函數(shù),若,則,則,故③為真命題;由函數(shù)則當(dāng)時,故可得是函數(shù)的一個對稱中心,故④為真命題;故答案為:②③④【題目點撥】本題考查的知識點是命題的真假判斷與應(yīng)用,函數(shù)單調(diào)性的性質(zhì),偶函數(shù),正弦函數(shù)的對稱性,是對函數(shù)性質(zhì)的綜合考查,熟練掌握基本初等函數(shù)的性質(zhì)是解答本題的關(guān)鍵13、2【解題分析】,與的夾角等于與的夾角,所以考點:向量的坐標(biāo)運(yùn)算與向量夾角14、6【解題分析】根據(jù)分段函數(shù)的定義,分別求出和,計算即可求出結(jié)果.【題目詳解】由題知,,,.故答案為:6.【題目點撥】本題考查了分段函數(shù)求函數(shù)值的問題,考查了對數(shù)的運(yùn)算.屬于基礎(chǔ)題.15、3【解題分析】直接利用函數(shù)的解析式,求函數(shù)值即可【題目詳解】函數(shù)f(x)=,則==3故答案為3【題目點撥】本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,考查計算能力16、①.②.【解題分析】由題意利用函數(shù)的圖象變換規(guī)律求得的解析式,可得的解析式,再根據(jù)余弦函數(shù)的值域,二次函數(shù)的性質(zhì),求得的值域【題目詳解】函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,函數(shù),,故當(dāng)時,取得最大值為;當(dāng)時,取得最小值為,故的值域為,,故答案為:;,三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)【解題分析】(1)由最大值和最小值求得,的值,由以及可得的值,再由最高點可求得的值,即可得的解析式,由正弦函數(shù)的對稱中心可得對稱中心;(2)由圖象的平移變換求得的解析式,由正弦函數(shù)的性質(zhì)可得的值域,令的取值為的值域,解不等式即可求解.【小問1詳解】由題意可得:,可得,所以,因為,所以,可得,所以,由可得,因為,所以,,所以.令可得,所以對稱中心為.【小問2詳解】由題意可得:,當(dāng)時,,,若關(guān)于的方程有實數(shù)根,則有實根,所以,可得:.所以實數(shù)的取值范圍為.18、(1);(2);(3)見解析【解題分析】(1)首先可通過點坐標(biāo)得出點的坐標(biāo),然后通過點也在圖像上即可得出的值;(2)首先可以設(shè)出點的坐標(biāo)為,然后得到與、與的關(guān)系,最后通過在的圖像上以及與、與的關(guān)系即可得到函數(shù)的解析式;(3)首先可通過三個函數(shù)的解析式得出函數(shù)的解析式,再通過函數(shù)的單調(diào)性得出函數(shù)的單調(diào)性,最后根據(jù)函數(shù)的單調(diào)性即可計算出函數(shù)的最值【題目詳解】(1)當(dāng)點的坐標(biāo)為,點的坐標(biāo)為,因為點也在圖像上,所以,即;(2)設(shè)函數(shù)上,則有,即,而在的圖像上,所以,代入得;(3)因為、、,所以,,令函數(shù),因為當(dāng)時,函數(shù)單調(diào)遞減,所以當(dāng)時,函數(shù)單調(diào)遞增,,,綜上所述,最小值為,最大值為【題目點撥】本題考查了對數(shù)函數(shù)的相關(guān)性質(zhì),考查了對數(shù)的運(yùn)算、對數(shù)函數(shù)的單調(diào)性以及最值,考查函數(shù)方程思想以及化歸與轉(zhuǎn)化思想,體現(xiàn)了基礎(chǔ)性與綜合性,提高了學(xué)生的邏輯推理能力19、(1)最小正周期.對稱中心為:,.(2)【解題分析】(1)根據(jù)周期和對稱軸公式直接求解;(2)先根據(jù)定義域求的范圍,再求函數(shù)的最小值,求參數(shù)的值.【題目詳解】(1)∵,∴的最小正周期令,,解得,,∴的對稱中心為:,.(2)當(dāng)時,,故當(dāng)時,函數(shù)取得最小值,即,∴取得最小值為,∴【題目點撥】本題考查的基本性質(zhì),意在考查基本公式和基本性質(zhì),屬于基礎(chǔ)題型.20、(1)-1,6;(2)答案見詳解【解題分析】(1)由f(x)≥b的解集為{x|1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年采購合同:電子產(chǎn)品批量采購及技術(shù)支持
- 2024版特種物品運(yùn)輸協(xié)議3篇
- 2024年版企業(yè)租車服務(wù)協(xié)議規(guī)范化文件版B版
- 2024慶陽房屋租賃及租后維護(hù)服務(wù)合同3篇
- 2024年私募股權(quán)投資基金投融資合作協(xié)議3篇
- 2024年美甲行業(yè)勞動合同樣本
- 2024年度藝術(shù)品寄賣代理委托協(xié)議(含投資咨詢)3篇
- 2024年版建筑總承包協(xié)議解除條款明細(xì)一
- 2024年綿陽地區(qū)標(biāo)準(zhǔn)房屋租賃協(xié)議格式版B版
- 2025年度智能家居產(chǎn)品形象拍攝合作協(xié)議3篇
- 《數(shù)學(xué)廣角-優(yōu)化》說課稿-2024-2025學(xué)年四年級上冊數(shù)學(xué)人教版
- 《小學(xué)生良好書寫習(xí)慣培養(yǎng)的研究》中期報告
- 2025年度愛讀書學(xué)長參與的讀書項目投資合同
- 大學(xué)英語四級詞匯表(下載)
- 2025年四川成都市溫江區(qū)市場監(jiān)督管理局選聘編外專業(yè)技術(shù)人員20人歷年管理單位筆試遴選500模擬題附帶答案詳解
- 北京課改版六年級英語下冊全冊知識點清單匯總
- 跌落測試(中文版)ISTA2A2006
- 云南省教育科學(xué)規(guī)劃課題開題報告 - 云南省教育科學(xué)研究院
- 蒸汽管道施工方案(20201118222709)
- 漢語教程第一冊-上-測試
- 城市供水問題與對策研究畢業(yè)論文
評論
0/150
提交評論