2024屆貴州省黔東南市高一上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
2024屆貴州省黔東南市高一上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
2024屆貴州省黔東南市高一上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
2024屆貴州省黔東南市高一上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
2024屆貴州省黔東南市高一上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆貴州省黔東南市高一上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知,是不共線的向量,,,,若,,三點共線,則實數(shù)的值為()A. B.10C. D.52.17世紀(jì),在研究天文學(xué)的過程中,為了簡化大數(shù)運算,蘇格蘭數(shù)學(xué)家納皮爾發(fā)明了對數(shù),對數(shù)的思想方法即把乘方和乘法運算分別轉(zhuǎn)化為乘法和加法,數(shù)學(xué)家拉普拉斯稱贊為“對數(shù)的發(fā)明在實效上等于把天文學(xué)家的壽命延長了許多倍”.已知,,設(shè),則所在的區(qū)間為()A. B.C. D.3.已知函數(shù)在上是增函數(shù),則實數(shù)的取值范圍是A. B.C. D.4.從1,2,3,4這4個數(shù)中,不放回地任意取兩個數(shù),兩個數(shù)都是奇數(shù)概率是A. B.C. D.5.下列函數(shù)中,最小正周期為π2A.y=cosxC.y=cos2x6.已知是方程的兩根,且,則的值為A. B.C.或 D.7.若函數(shù)y=|x|(x-1)的圖象與直線y=2(x-t)有且只有2個公共點,則實數(shù)t的所有取值之和為()A.2 B.C.1 D.8.已知函數(shù)的部分圖象如圖所示,下列結(jié)論正確的個數(shù)是()①②將的圖象向右平移1個單位,得到函數(shù)的圖象③的圖象關(guān)于直線對稱④若,則A.0個 B.1個C.2個 D.3個9.中國宋代的數(shù)學(xué)家秦九韶曾提出“三斜求積術(shù)”,即假設(shè)在平面內(nèi)有一個三角形,邊長分別為,,,三角形的面積可由公式求得,其中為三角形周長的一半,這個公式也被稱為海倫秦九韶公式,現(xiàn)有一個三角形的邊長滿足,,則此三角形面積的最大值為()A.6 B.C.12 D.10.已知函數(shù)滿足對任意實數(shù),都有成立,則的取值范圍是()A B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知f(x)是定義在R上的偶函數(shù),且在區(qū)間(?∞,0)上單調(diào)遞增.若實數(shù)a滿足f(2|a-1|)>f(-2),則a的取值范圍是12.函數(shù)的單調(diào)減區(qū)間是__________13.已知集合,則集合的子集個數(shù)為___________.14.在三棱錐中,,,,則三棱錐的外接球的表面積為________.15.函數(shù)的反函數(shù)是___________.16.有下列四個說法:①已知向量,,若與的夾角為鈍角,則;②若函數(shù)的圖象關(guān)于直線對稱,則;③函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;④當(dāng)時,函數(shù)有四個零點其中正確的是___________(填上所有正確說法的序號)三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè)函數(shù).(1)若在區(qū)間上的最大值為,求的取值范圍;(2)若在區(qū)間上有零點,求的最小值.18.已知函數(shù)的定義域為,且對一切,,都有,當(dāng)時,總有.(1)求的值;(2)證明:是定義域上的減函數(shù);(3)若,解不等式.19.設(shè)函數(shù),將該函數(shù)的圖象向左平移個單位長度后得到函數(shù)的圖象,函數(shù)的圖象關(guān)于y軸對稱.(1)求的值,并在給定的坐標(biāo)系內(nèi),用“五點法”列表并畫出函數(shù)在一個周期內(nèi)的圖象;(2)求函數(shù)的單調(diào)遞增區(qū)間;(3)設(shè)關(guān)于x的方程在區(qū)間上有兩個不相等的實數(shù)根,求實數(shù)m的取值范圍.20.已知非空集合,(1)當(dāng)時,求;(2)若,求實數(shù)的取值范圍21.已知函數(shù),,且.(1)求實數(shù)m的值,并求函數(shù)有3個不同的零點時實數(shù)b的取值范圍;(2)若函數(shù)在區(qū)間上為增函數(shù),求實數(shù)a的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】由向量的線性運算,求得,根據(jù)三點共線,得到,列出方程組,即可求解.【題目詳解】由,,可得,因為,,三點共線,所以,所以存在唯一的實數(shù),使得,即,所以,解得,.故選:A.2、C【解題分析】利用對數(shù)的運算性質(zhì)求出,由此可得答案.【題目詳解】,所以.故選:C3、A【解題分析】當(dāng)時,在上是增函數(shù),且恒大于零,即當(dāng)時,在上是減函數(shù),且恒大于零,即,因此選A點睛:1.復(fù)合函數(shù)單調(diào)性的規(guī)則若兩個簡單函數(shù)的單調(diào)性相同,則它們的復(fù)合函數(shù)為增函數(shù);若兩個簡單函數(shù)的單調(diào)性相反,則它們的復(fù)合函數(shù)為減函數(shù).即“同增異減”

函數(shù)單調(diào)性的性質(zhì)(1)若f(x),g(x)均為區(qū)間A上的增(減)函數(shù),則f(x)+g(x)也是區(qū)間A上的增(減)函數(shù),更進(jìn)一步,即增+增=增,增-減=增,減+減=減,減-增=減;(2)奇函數(shù)在其關(guān)于原點對稱的區(qū)間上單調(diào)性相同,偶函數(shù)在其關(guān)于原點對稱的區(qū)間上單調(diào)性相反4、A【解題分析】從1,2,3,4這4個數(shù)中,不放回地任意取兩個數(shù),共有(12),(1,3),(1,4),(2,1),(2,3),(2,4)(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12種其中滿足條件兩個數(shù)都是奇數(shù)的有(1,3),(3,1)兩種情況故從1,2,3,4這4個數(shù)中,不放回地任意取兩個數(shù),兩個數(shù)都是奇數(shù)的概率.故選A.5、D【解題分析】利用三角函數(shù)的周期性求解.【題目詳解】A.y=cosx周期為T=2πB.y=tanx的周期為C.y=cos2x的周期為D.y=tan2x的周期為故選:D6、A【解題分析】∵是方程的兩根,∴,∴又,∴,∵,∴又,∴,∴.選A點睛:解決三角恒等變換中給值求角問題的注意點解決“給值求角”問題時,解題的關(guān)鍵也是變角,即把所求角用含已知角的式子表示,然后求出適合的一個三角函數(shù)值.再根據(jù)所給的條件確定所求角的范圍,最后結(jié)合該范圍求得角,有時為了解題需要壓縮角的取值范圍7、C【解題分析】可直接根據(jù)題意轉(zhuǎn)化為方程有兩個根,然后利用分類討論思想去掉絕對值再利用判別式即可求得各個t的值【題目詳解】由題意得方程有兩個不等實根,當(dāng)方程有兩個非負(fù)根時,令時,則方程為,整理得,解得;當(dāng)時,,解得,故不滿足滿足題意;當(dāng)方程有一個正跟一個負(fù)根時,當(dāng)時,,,解得,當(dāng)時,方程為,,解得;當(dāng)方程有兩個負(fù)根時,令,則方程為,解得,當(dāng),,解得,不滿足題意綜上,t的取值為和,因此t的所有取值之和為1,故選C【題目點撥】本題是在二次函數(shù)的基礎(chǔ)上加了絕對值,所以首先需解決絕對值,關(guān)于去絕對值直接用分類討論思想即可;關(guān)于二次函數(shù)根的分布需結(jié)合對稱軸,判別式,進(jìn)而判斷,必要時可結(jié)合進(jìn)行判斷8、C【解題分析】由函數(shù)的圖象的頂點坐標(biāo)求出A,由周期求出,可判斷①,由點的坐標(biāo)代入求得,可得函數(shù)的解析式,再根據(jù)函數(shù)圖象的變換規(guī)律可判斷②,將代入解析式中驗證,可判斷③;根據(jù)三角函數(shù)的圖象和性質(zhì)可判斷④,即可得到答案【題目詳解】由函數(shù)圖象可知:,函數(shù)的最小正周期為,故,將代入解析式中:,得:由于,故,故①錯誤;由以上分析可知,將的圖象向右平移1個單位,得到函數(shù)的圖象,故②正確;將代入得,故③錯誤;由于函數(shù)的最小正周期為8,而,故不會出現(xiàn)一個取到最大或最小值另一個取到最小或最大的情況,故,故④正確,故選:C9、B【解題分析】根據(jù)海倫秦九韶公式和基本不等式直接計算即可.【題目詳解】由題意得:,,當(dāng)且僅當(dāng),即時取等號,故選:B10、C【解題分析】易知函數(shù)在R上遞增,由求解.【題目詳解】因為函數(shù)滿足對任意實數(shù),都有成立,所以函數(shù)在R上遞增,所以,解得,故選:C二、填空題:本大題共6小題,每小題5分,共30分。11、(【解題分析】由題意f(x)在(0,+∞)上單調(diào)遞減,又f(x)是偶函數(shù),則不等式f(2a-1)>f(-2)可化為f(212、【解題分析】,在上遞增,在上遞增,在上遞增,在上遞減,復(fù)合函數(shù)的性質(zhì),可得單調(diào)減區(qū)間是,故答案為.13、2【解題分析】先求出然后直接寫出子集即可.【題目詳解】,,所以集合的子集有,.子集個數(shù)有2個.故答案為:2.14、【解題分析】構(gòu)造長方體,使得面上的對角線長分別為4,5,,則長方體的對角線長等于三棱錐P-ABC外接球的直徑,即可求出三棱錐P-ABC外接球的表面積【題目詳解】∵三棱錐P?ABC中,PA=BC=4,PB=AC=5,PC=AB=,∴構(gòu)造長方體,使得面上的對角線長分別為4,5,,則長方體的對角線長等于三棱錐P?ABC外接球的直徑.設(shè)長方體的棱長分別為x,y,z,則,∴三棱錐P?ABC外接球的直徑為,∴三棱錐P?ABC外接球的表面積為.故答案為:26π.【題目點撥】本題主要考查三棱錐外接球表面積的求法,屬于難題.要求外接球的表面積和體積,關(guān)鍵是求出球的半徑,求外接球半徑的常見方法有:①若三條棱兩垂直則用(為三棱的長);②若面(),則(為外接圓半徑);③可以轉(zhuǎn)化為長方體的外接球;④特殊幾何體可以直接找出球心和半徑.15、;【解題分析】根據(jù)指數(shù)函數(shù)與對數(shù)函數(shù)互為反函數(shù)直接求解.【題目詳解】因為,所以,即的反函數(shù)為,故答案為:16、②③【解題分析】①:根據(jù)平面向量夾角的性質(zhì)進(jìn)行求解判斷;②:利用函數(shù)的對稱性,結(jié)合兩角和(差)的正余弦公式進(jìn)行求解判斷即可;③:利用導(dǎo)數(shù)的性質(zhì)、函數(shù)的奇偶性進(jìn)行求解判斷即可.④:根據(jù)對數(shù)函數(shù)的性質(zhì),結(jié)合零點的定義進(jìn)行求解判斷即可【題目詳解】①:因為與的夾角為鈍角,所以有且與不能反向共線,因此有,當(dāng)與反向共線時,,所以有且,因此本說法不正確;②:因為函數(shù)的圖象關(guān)于直線對稱,所以有,即,于是有:,化簡,得,因為,所以,因此本說法正確;③:因為,所以函數(shù)偶函數(shù),,當(dāng)時,單調(diào)遞增,即在上單調(diào)遞增,又因為該函數(shù)是偶函數(shù),所以該在上單調(diào)遞減,因此本說法正確;④:,問題轉(zhuǎn)化為函數(shù)與函數(shù)的交點個數(shù)問題,如圖所示:當(dāng)時,,此時有四個交點,當(dāng)時,,所以交點的個數(shù)不是四個,因此本說法不正確,故答案為:②③三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解題分析】⑴根據(jù)函數(shù)圖象可得在區(qū)間上的最大值必是和其中較大者,求解即可得到的取值范圍;⑵設(shè)方程的兩根是,,由根與系數(shù)之間的關(guān)系轉(zhuǎn)化為,對其化簡原式大于或者等于,構(gòu)造新函數(shù),利用函數(shù)的最值來求解解析:(1)因為圖象是開口向上的拋物線,所以在區(qū)間上的最大值必是和中較大者,而,所以只要,即,得.(2)設(shè)方程的兩根是,,且,則,所以,當(dāng)且僅當(dāng)時取等號.設(shè),則,由,得,因此,所以,此時,由知.所以當(dāng)且時,取得最小值.點睛:本題考查了函數(shù)零點的判定定理,二次函數(shù)的性質(zhì)以及解不等式,在求參量的最值時,利用根與系數(shù)之間的關(guān)系,轉(zhuǎn)化為根的方程,運用函數(shù)的思想當(dāng)取得對稱軸時有最值,本題需要進(jìn)行化歸轉(zhuǎn)化,難度較大18、(1);(2)證明見解析;(3).【解題分析】(1)令即可求得結(jié)果;(2)設(shè),由即可證得結(jié)論;(3)將所求不等式化為,結(jié)合單調(diào)性和定義域的要求即可構(gòu)造不等式組求得結(jié)果.【小問1詳解】令,則,解得:;【小問2詳解】設(shè),則,,,,是定義域上的減函數(shù);【小問3詳解】由得:,即,又,,是定義域上的減函數(shù),,解得:;又,,的解集為.【題目點撥】思路點睛:本題考查抽象函數(shù)的函數(shù)值的求解、單調(diào)性證明以及利用單調(diào)性求解函數(shù)不等式的問題;求解函數(shù)不等式的基本思路是將所求不等式化為同一函數(shù)的兩個函數(shù)值之間的比較問題,進(jìn)而通過函數(shù)的單調(diào)性得到自變量的大小關(guān)系.19、(1),圖象見解析;(2)(3)【解題分析】(1)化簡解析式,通過三角函數(shù)圖象變換求得,結(jié)合關(guān)于軸對稱求得,利用五點法作圖即可;(2)利用整體代入法求得的單調(diào)遞增區(qū)間.(3)化簡方程,利用換元法,結(jié)合一元二次方程根的分布求得的取值范圍.【小問1詳解】.所以,將該函數(shù)的圖象向左平移個單位后得到函數(shù),則,該函數(shù)的圖象關(guān)于軸對稱,可知該函數(shù)為偶函數(shù),故,,解得,.因為,所以得到.所以函數(shù),列表:000作圖如下:【小問2詳解】由函數(shù),令,,解得,,所以函數(shù)的單調(diào)遞增區(qū)間為【小問3詳解】由(1)得到,化簡得,令,,則.關(guān)于的方程,即,解得,.當(dāng)時,由,可得;要使原方程在上有兩個不相等的實數(shù)根,則,解得.故實數(shù)的取值范圍為.20、(1);(2).【解題分析】(1)時,先解一元二次不等式,化簡集合A和B,再進(jìn)行交集運算即可;(2)根據(jù)子集關(guān)系列不等式,解不等式即得結(jié)果.【題目詳解】解:(1)當(dāng)時,,由,解得,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論