![2024屆阿里市高一上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第1頁](http://file4.renrendoc.com/view/92e7e42da219beca70503d228235a8ae/92e7e42da219beca70503d228235a8ae1.gif)
![2024屆阿里市高一上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第2頁](http://file4.renrendoc.com/view/92e7e42da219beca70503d228235a8ae/92e7e42da219beca70503d228235a8ae2.gif)
![2024屆阿里市高一上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第3頁](http://file4.renrendoc.com/view/92e7e42da219beca70503d228235a8ae/92e7e42da219beca70503d228235a8ae3.gif)
![2024屆阿里市高一上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第4頁](http://file4.renrendoc.com/view/92e7e42da219beca70503d228235a8ae/92e7e42da219beca70503d228235a8ae4.gif)
![2024屆阿里市高一上數(shù)學(xué)期末質(zhì)量檢測試題含解析_第5頁](http://file4.renrendoc.com/view/92e7e42da219beca70503d228235a8ae/92e7e42da219beca70503d228235a8ae5.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆阿里市高一上數(shù)學(xué)期末質(zhì)量檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè),表示兩個不同平面,表示一條直線,下列命題正確的是()A.若,,則.B.若,,則.C.若,,則.D.若,,則.2.已知為兩條直線,為兩個不同的平面,則下列說法正確的是A.若,則 B.若,則C.若,則 D.若,則3.以下四組數(shù)中大小比較正確的是()A. B.C. D.4.英國物理學(xué)家和數(shù)學(xué)家牛頓提出了物體在常溫環(huán)境下溫度變化的冷卻模型,設(shè)物體的初始溫度為,環(huán)境溫度為,其中,經(jīng)過后物體溫度滿足(其中k為正常數(shù),與物體和空氣的接觸狀況有關(guān)).現(xiàn)有一個的物體,放在的空氣中冷卻,后物體的溫度是,則()(參考數(shù)據(jù):)A.1.17 B.0.85C.0.65 D.0.235.我國古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測雨”題:在下雨時,用一個圓臺形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸;③臺體的體積公式).A.2寸 B.3寸C.4寸 D.5寸6.當(dāng)時,若,則的值為A. B.C. D.7.已知函數(shù)是定義在R上的偶函數(shù),若對于任意不等實數(shù),,,不等式恒成立,則不等式的解集為()A. B.C. D.8.設(shè),則()A. B.aC. D.9.函數(shù)A.是奇函數(shù)且在區(qū)間上單調(diào)遞增B.是奇函數(shù)且在區(qū)間上單調(diào)遞減C.是偶函數(shù)且在區(qū)間上單調(diào)遞增D.是偶函數(shù)且在區(qū)間上單調(diào)遞減10.函數(shù)的定義域是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最大值是____________.12.已知函數(shù)若,則實數(shù)的值等于________13.函數(shù)關(guān)于直線對稱,設(shè),則________.14.若函數(shù)在區(qū)間上沒有最值,則的取值范圍是______.15.某扇形的圓心角為2弧度,半徑為,則該扇形的面積為___________16.某班有39名同學(xué)參加數(shù)學(xué)、物理、化學(xué)課外研究小組,每名同學(xué)至多參加兩個小組.已知參加數(shù)學(xué)、物理、化學(xué)小組的人數(shù)分別為26,15,13,同時參加數(shù)學(xué)和物理小組的有6人,同時參加物理和化學(xué)小組的有4人,則同時參見數(shù)學(xué)和化學(xué)小組有多少人__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,點F是PB的中點,點E在邊BC上移動(Ⅰ)求三棱錐E-PAD的體積;(Ⅱ)當(dāng)點E為BC的中點時,試判斷EF與平面PAC的位置關(guān)系,并說明理由;(Ⅲ)證明:無論點E在邊BC的何處,都有PE⊥AF18.已知函數(shù)(1)求的最小正周期;(2)當(dāng)時,求的單調(diào)區(qū)間;(3)在(2)的件下,求的最小值,以及取得最小值時相應(yīng)自變量x的取值.19.已知函數(shù)(1)求函數(shù)的對稱中心和單調(diào)遞減區(qū)間;(2)若將函數(shù)的圖象上每一點向右平移個單位得到函數(shù)的圖象,求函數(shù)在區(qū)間上的值域20.如圖,在中,,,點在的延長線上,點是邊上的一點,且存在非零實數(shù),使.(Ⅰ)求與的數(shù)量積;(Ⅱ)求與的數(shù)量積.21.已知函數(shù)在一個周期內(nèi)的圖象如圖所示(1)求的解析式;(2)直接寫出在區(qū)間上的單調(diào)區(qū)間;(3)已知,都成立,直接寫出一個滿足題意的值
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】由或判斷;由,或相交判斷;根據(jù)線面平行與面面平行的定義判斷;由或相交,判斷.【題目詳解】若,,則或,不正確;若,,則,或相交,不正確;若,,可得沒有公共點,即,正確;若,,則或相交,不正確,故選C.【題目點撥】本題主要考查空間平行關(guān)系的性質(zhì)與判斷,屬于基礎(chǔ)題.空間直線、平面平行或垂直等位置關(guān)系命題的真假判斷,常采用畫圖(尤其是畫長方體)、現(xiàn)實實物判斷法(如墻角、桌面等)、排除篩選法等;另外,若原命題不太容易判斷真假,可以考慮它的逆否命題,判斷它的逆否命題真假,原命題與逆否命題等價.2、D【解題分析】A中,有可能,故A錯誤;B中,顯然可能與斜交,故B錯誤;C中,有可能,故C錯誤;D中,由得,,又所以,故D正確.3、C【解題分析】結(jié)合指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)性質(zhì)即可求解詳解】對A,,故,錯誤;對B,在第一象限為增函數(shù),故,錯誤;對C,為增函數(shù),故,正確;對D,,,故,錯誤;故選:C【題目點撥】本題考查根據(jù)指數(shù)函數(shù),對數(shù)函數(shù),冪函數(shù)性質(zhì)比較大小,屬于基礎(chǔ)題4、D【解題分析】根據(jù)所給公式,將所給條件中的溫度相應(yīng)代入,利用對數(shù)的運算求解即可.【題目詳解】根據(jù)題意:的物體,放在的空氣中冷卻,后物體的溫度是,有:,所以,故,即,故選:D.5、B【解題分析】根據(jù)題意可得平地降雨量,故選B.考點:1.實際應(yīng)用問題;2.圓臺的體積.6、A【解題分析】分析:首先根據(jù)題中所給的角的范圍,求得相應(yīng)的角的范圍,結(jié)合題中所給的角的三角函數(shù)值,結(jié)合角的范圍,利用同角三角函數(shù)的平方關(guān)系式,求得相應(yīng)的三角函數(shù)值,之后應(yīng)用誘導(dǎo)公式和同角三角函數(shù)商關(guān)系,求得結(jié)果.詳解:因為,所以,所以,因為,所以,所以,所以,所以答案是,故選A.點睛:該題考查的是有關(guān)三角恒等變換問題,涉及到的知識點有同角三角函數(shù)關(guān)系式中的平方關(guān)系和商關(guān)系,以及誘導(dǎo)公式求得結(jié)果.7、C【解題分析】由條件對于任意不等實數(shù),,不等式恒成立可得函數(shù)在上為減函數(shù),利用函數(shù)性質(zhì)化簡不等式求其解.【題目詳解】∵函數(shù)是定義在R上的偶函數(shù),∴,∴不等式可化為∵對于任意不等實數(shù),,不等式恒成立,∴函數(shù)在上為減函數(shù),又,∴,∴,∴不等式的解集為故選:C.8、C【解題分析】由求出的值,再由誘導(dǎo)公式可求出答案【題目詳解】因為,所以,所以,故選:C9、A【解題分析】由可知是奇函數(shù),排除,,且,由可知錯誤,故選10、A【解題分析】利用對數(shù)函數(shù)的真數(shù)大于零,即可求解.【題目詳解】由函數(shù),則,解得,所以函數(shù)的定義域為.故選:A【題目點撥】本題考查了對數(shù)型復(fù)合函數(shù)的定義域,需熟記對數(shù)的真數(shù)大于零,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】把函數(shù)化為的形式,然后結(jié)合輔助角公式可得【題目詳解】由已知,令,,,則,所以故答案為:12、-3【解題分析】先求,再根據(jù)自變量范圍分類討論,根據(jù)對應(yīng)解析式列方程解得結(jié)果.【題目詳解】當(dāng)a>0時,2a=-2解得a=-1,不成立當(dāng)a≤0時,a+1=-2,解得a=-3【題目點撥】求某條件下自變量的值,先假設(shè)所求的值在分段函數(shù)定義區(qū)間的各段上,然后求出相應(yīng)自變量的值,切記代入檢驗,看所求的自變量的值是否滿足相應(yīng)段自變量的取值范圍.13、1【解題分析】根據(jù)正弦及余弦函數(shù)的對稱性的性質(zhì)可得的對稱軸為函數(shù)g(x)=3cos(ωx+φ)+1的對稱中心,即可求值.【題目詳解】∵函數(shù)f(x)的圖象關(guān)于x對稱∵f(x)=3sin(ωx+φ)的對稱軸為函數(shù)g(x)=3cos(ωx+φ)+1的對稱中心故有則1故答案為1【題目點撥】本題考查了正弦及余弦函數(shù)的性質(zhì)屬于基礎(chǔ)題14、【解題分析】根據(jù)正弦函數(shù)的圖像與性質(zhì),可求得取最值時的自變量值,由在區(qū)間上沒有最值可知,進(jìn)而可知或,解不等式并取的值,即可確定的取值范圍.【題目詳解】函數(shù),由正弦函數(shù)的圖像與性質(zhì)可知,當(dāng)取得最值時滿足,解得,由題意可知,在區(qū)間上沒有最值,則,,所以或,因為,解得或,當(dāng)時,代入可得或,當(dāng)時,代入可得或,當(dāng)時,代入可得或,此時無解.綜上可得或,即的取值范圍為.故答案為:.【題目點撥】本題考查了正弦函數(shù)的圖像與性質(zhì)應(yīng)用,由三角函數(shù)的最值情況求參數(shù),注意解不等式時的特殊值取法,屬于難題.15、16【解題分析】利用扇形的面積S,即可求得結(jié)論【題目詳解】∵扇形的半徑為4cm,圓心角為2弧度,∴扇形的面積S16cm2,故答案為:1616、【解題分析】設(shè)參加數(shù)學(xué)、物理、化學(xué)小組的同學(xué)組成的集合分別為,、,根據(jù)容斥原理可求出結(jié)果.【題目詳解】設(shè)參加數(shù)學(xué)、物理、化學(xué)小組的同學(xué)組成的集合分別為,、,同時參加數(shù)學(xué)和化學(xué)小組的人數(shù)為,因為每名同學(xué)至多參加兩個小組,所以同時參加三個小組的同學(xué)的人數(shù)為,如圖所示:由圖可知:,解得,所以同時參加數(shù)學(xué)和化學(xué)小組有人.故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)平行,(Ⅲ)詳見解析【解題分析】(1)三棱錐的體積==·=.(2)當(dāng)點為的中點時,與平面平行∵在中,分別為、的中點,∴,又平面,平面,∴平面(3)證明:∵⊥平面,平面,∴,又,,平面,平面.又平面,∴.又,點是的中點,∴,又,平面,∴⊥平面.∵平面,∴.考點:本小題主要考查三棱錐體積的計算、線面平行、線面垂直等的證明,考查學(xué)生的空間想象能力和邏輯推理能力.點評:計算三棱錐體積時,注意可以根據(jù)需要讓任何一個面作底面,還經(jīng)常利用等體積法求三棱錐18、(1)(2)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為(3)當(dāng)時,的最小值為0【解題分析】(1)根據(jù)周期公式計算即可.(2)求出單調(diào)區(qū)間,然后與所給的范圍取交集即可.(3)根據(jù)(2)的結(jié)論,對與進(jìn)行比較即可.【小問1詳解】,,故的最小正周期為.【小問2詳解】先求出增區(qū)間,即:令解得所以在區(qū)間上,當(dāng)時,函數(shù)單調(diào)遞增,當(dāng)時,函數(shù)單調(diào)遞減;所以的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為【小問3詳解】由(2)所得到的單調(diào)性可得,,所以在時取得最小值0.19、(1)對稱中心為,單調(diào)遞減區(qū)間為(2)【解題分析】(1)由倍角公式以及輔助角公式化簡函數(shù),然后由正弦函數(shù)的對稱中心以及單調(diào)遞減區(qū)間求出函數(shù)的對稱中心和單調(diào)遞減區(qū)間;(2)由函數(shù)的圖像向右平移個單位得到函數(shù)的解析式,再由,得到,求出函數(shù)在區(qū)間的值域,即可得到函數(shù)在區(qū)間上的值域【題目詳解】解(1)令,得:,∴的對稱中心為,由,得:,∴的單調(diào)區(qū)間為(2)由題意:∵∴∴∴的值域為【題目點撥】本題主要考查了正弦型函數(shù)對稱中心、單調(diào)性以及在給定區(qū)間的值域,屬于中檔題.20、(Ⅰ)-18;(Ⅱ).【解題分析】(Ⅰ)在中由余弦定理得,從而得到三角形為等腰三角形,可得,由數(shù)量積的定義可得.(Ⅱ)根據(jù)所給的向量式可得點在的角平分線上,故可得,所以,因為,所以得到.設(shè)設(shè),則得到,,根據(jù)數(shù)量積的定義及運算率可得所求試題解析:(Ⅰ)在中,由余弦定理得,所以,所以是等腰三角形,且,所以,所以(Ⅱ)由,得,所以點在的角平分線上,又因為點是邊上的一點,所以由角平分線性質(zhì)定理得,所以.因為,所以.設(shè),則,由,得,所以,又,所以點睛:解題時注意在三角形中常見的向量與幾何特征的關(guān)系:(1)在中,若或,則點是的外心;(2)在中,若,則點是的重心;(3)在中,若,則直線一定過的重心
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年智能杯墊合作協(xié)議書
- 2025年家電制造設(shè)備合作協(xié)議書
- 2025年固態(tài)地振動強度記錄儀合作協(xié)議書
- 一年級上冊語文期末試題(15篇)
- 護(hù)理心電圖知識專項考核試題
- 2025年個人獨資轉(zhuǎn)讓合同(2篇)
- 2025年個人項目投資合作協(xié)議經(jīng)典版(2篇)
- 2025年產(chǎn)品購買合同參考樣本(2篇)
- 2025年個人房屋抵押貸款合同(4篇)
- 2025年書面離婚合同協(xié)議范文(2篇)
- 中國人口研究專題報告-中國2025-2100年人口預(yù)測與政策建議-西南財經(jīng)大學(xué)x清華大學(xué)-202501
- 2025年度廚師職業(yè)培訓(xùn)學(xué)院合作辦學(xué)合同4篇
- 《組織行為學(xué)》第1章-組織行為學(xué)概述
- 25版六年級寒假特色作業(yè)
- 浙江省杭州市9+1高中聯(lián)盟2025屆高三一診考試英語試卷含解析
- 市場營銷試題(含參考答案)
- 2024年山東省泰安市高考物理一模試卷(含詳細(xì)答案解析)
- 護(hù)理指南手術(shù)器械臺擺放
- 腫瘤患者管理
- 四川省成都市高新區(qū)2024年七年級上學(xué)期語文期末試卷【含答案】
- 2025年中國航空部附件維修行業(yè)市場競爭格局、行業(yè)政策及需求規(guī)模預(yù)測報告
評論
0/150
提交評論