版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省邵東縣第十中學(xué)2024屆高一數(shù)學(xué)第一學(xué)期期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù):①y=2x;②y=log2x;③y=x-1;④y=;則下列函數(shù)圖像(第一象限部分)從左到右依次與函數(shù)序號的對應(yīng)順序是()A.②①③④ B.②③①④C.④①③② D.④③①②2.已知全集,則正確表示集合和關(guān)系的韋恩圖是A. B.C. D.3.若,則()A.“”是“”的充分不必要條件 B.“”是“”的充要條件C.“”是“”的必要不充分條件 D.“”是“”的既不充分也不必要條件4.函數(shù)在單調(diào)遞增,且為奇函數(shù),若,則滿足的的取值范圍是A. B.C. D.5.某單位共有名職工,其中不到歲的有人,歲的有人,歲及以上的有人,現(xiàn)用分層抽樣的方法,從中抽出名職工了解他們的健康情況.如果已知歲的職工抽取了人,則歲及以上的職工抽取的人數(shù)為()A. B.C. D.6.已知冪函數(shù)的圖象過點,則的定義域為()A.R B.C. D.7.設(shè)函數(shù)f(x)=asinx+bcosx,其中a,b∈R,ab≠0,若f(x)≥f()對一切x∈R恒成立,則下列結(jié)論中正確的是()A.B.點是函數(shù)的一個對稱中心C.在上是增函數(shù)D.存在直線經(jīng)過點且與函數(shù)的圖象有無數(shù)多個交點8.下列說法正確的是()A.若,則B.若,則C.若,則D.若,則9.已知角的終邊經(jīng)過點,則A. B.C. D.10.函數(shù)的一個零點所在的區(qū)間是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.全集,集合,則______12.若函數(shù)(,且)在上是減函數(shù),則實數(shù)的取值范圍是__________.13.潮汐是發(fā)生在沿海地區(qū)的一種自然現(xiàn)象,是指海水在天體(主要是月球和太陽)引潮力作用下所產(chǎn)生的周期性運動.習(xí)慣上把海面垂直方向漲落稱為潮汐,而海水在水平方向的流動稱為潮流.早先的人們?yōu)榱吮硎旧钡臅r刻,把發(fā)生在早晨的高潮叫潮,發(fā)生在晚上的高潮叫汐,這是潮汐名稱的由來.下表中給出了某市碼頭某一天水深與時間的關(guān)系(夜間零點開始計時).時刻(t)024681012水深(y)單位:米5.04.84.74.64.44.34.2時刻(t)141618202224水深(y)單位:米4.34.44.64.74.85.0用函數(shù)模型來近似地描述這些數(shù)據(jù),則________.14.已知向量,,且,則__________.15.已知命題:,都有是真命題,則實數(shù)取值范圍是______16.計算的結(jié)果是_____________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.設(shè),且.(1)求的值;(2)求在區(qū)間上的最大值.18.已知函數(shù)(,且).(1)若,試比較與的大小,并說明理由;(2)若,且,,三點在函數(shù)的圖像上,記的面積為,求的表達式,并求的值域.19.為適應(yīng)新冠肺炎疫情長期存在的新形勢,打好疫情防控的主動仗,某學(xué)校大力普及科學(xué)防疫知識,現(xiàn)需要在2名女生、3名男生中任選2人擔任防疫宣講主持人,每位同學(xué)當選的機會是相同的.(1)寫出試驗的樣本空間,并求當選的2名同學(xué)中恰有1名女生的概率;(2)求當選的2名同學(xué)中至少有1名男生的概率.20.為宣傳2022年北京冬奧會,某公益廣告公司擬在一張矩形海報紙(記為矩形,如圖)上設(shè)計三個等高的宣傳欄(欄面分別為一個等腰三角形和兩個全等的直角梯形),宣傳欄(圖中陰影部分)的面積之和為.為了美觀,要求海報上所有水平方向和豎直方向的留空寬度均為.設(shè)直角梯形的高為.(1)當時,求海報紙的面積;(2)為節(jié)約成本,應(yīng)如何選擇海報紙的尺寸,可使用紙量最少(即矩形的面積最?。??21.某種產(chǎn)品的成本是50元/件,試銷階段每件產(chǎn)品的售價(單位:元)與產(chǎn)品的日銷售量(單位:件)之間有如下表所示的關(guān)系:/元60708090/件80604020(1)根據(jù)以上表格中的數(shù)據(jù)判斷是否適合作為與的函數(shù)模型,并說明理由;(2)當每件產(chǎn)品的售價為多少時日利潤(單位:元)最大,并求最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解題分析】圖一與冪函數(shù)圖像相對應(yīng),所以應(yīng)④;圖二與反比例函數(shù)相對應(yīng),所以應(yīng)為③;圖三與指數(shù)函數(shù)相對應(yīng),所以應(yīng)為①;圖四與對數(shù)函數(shù)圖像相對應(yīng),所以應(yīng)為②所以對應(yīng)順序為④③①②,故選D2、B【解題分析】∵集合∴集合∵集合∴故選B3、C【解題分析】根據(jù)推出關(guān)系依次判斷各個選項即可得到結(jié)果.【題目詳解】對于A,,,則“”是“”的必要不充分條件,A錯誤;對于B,,,則“”是“”的充分不必要條件,B錯誤;對于C,,,則“”是“”的必要不充分條件,C正確;對于D,,,則“”是“”的充分不必要條件,D錯誤.故選:C.4、D【解題分析】是奇函數(shù),故;又是增函數(shù),,即則有,解得,故選D.【題目點撥】解本題的關(guān)鍵是利用轉(zhuǎn)化化歸思想,結(jié)合奇函數(shù)的性質(zhì)將問題轉(zhuǎn)化為,再利用單調(diào)性繼續(xù)轉(zhuǎn)化為,從而求得正解.5、A【解題分析】計算抽樣比例,求出不到35歲的應(yīng)抽取人數(shù),再求50歲及以上的應(yīng)抽取人數(shù).【題目詳解】計算抽樣比例為,所以不到35歲的應(yīng)抽取(人,所以50歲及以上的應(yīng)抽取(人.故選:.6、C【解題分析】設(shè),點代入即可求得冪函數(shù)解析式,進而可求得定義域.【題目詳解】設(shè),因為的圖象過點,所以,解得,則,故的定義域為故選:C7、D【解題分析】根據(jù)f(x)≥f()對一切x∈R恒成立,那么x=取得最小值.結(jié)合周期判斷各選項即可【題目詳解】函數(shù)f(x)=asinx+bcosx=周期T=2π由題意x=取得最小值,a,b∈R,ab≠0,∴f()=0不正確;x=取得最小值,那么+=就是相鄰的對稱中心,∴點(,0)不是函數(shù)f(x)的一個對稱中心;因為x=取得最小值,根據(jù)正弦函數(shù)的性質(zhì)可知,f(x)在是減函數(shù)故選D【題目點撥】本題考查三角函數(shù)的性質(zhì)應(yīng)用,排除法求解,考查轉(zhuǎn)化思想以及計算能力8、C【解題分析】運用作差法可以判斷C,然后運用代特殊值法可以判斷A、B、D,進而得到答案.【題目詳解】對A,令,則.A錯誤;對B,令,則.B錯誤;對C,因為,而,則,所以,即.C正確;對D,令,則.D不正確.故選:C.9、D【解題分析】由任意角的三角函數(shù)定義列式求解即可.【題目詳解】由角終邊經(jīng)過點,可得.故選D.【題目點撥】本題主要考查了任意角三角函數(shù)的定義,屬于基礎(chǔ)題.10、B【解題分析】先求出根據(jù)零點存在性定理得解.【題目詳解】由題得,,所以所以函數(shù)一個零點所在的區(qū)間是.故選B【題目點撥】本題主要考查零點存在性定理,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】直接利用補集的定義求解【題目詳解】因為全集,集合,所以,故答案為:12、【解題分析】根據(jù)分段函數(shù)的單調(diào)性,列出式子,進行求解即可.【題目詳解】由題可知:函數(shù)在上是減函數(shù)所以,即故答案為:13、##【解題分析】根據(jù)題意條件,結(jié)合表內(nèi)給的數(shù)據(jù),通過一天內(nèi)水深的最大值和最小值,即可列出關(guān)于、之間的關(guān)系,通過解方程解出、,即可求解出答案.【題目詳解】由表中某市碼頭某一天水深與時間的關(guān)系近似為函數(shù),從表中數(shù)據(jù)可知,函數(shù)的最大值為5.0,最小值為4.2,所以,解得,,故.故答案為:或?qū)懗?14、【解題分析】根據(jù)共線向量的坐標表示,列出方程,即可求解.【題目詳解】由題意,向量,,因為,可得,解得.故答案為:.15、【解題分析】由于,都有,所以,從而可求出實數(shù)的取值范圍【題目詳解】解:因為命題:,都有是真命題,所以,即,解得,所以實數(shù)的取值范圍為,故答案為:16、.【解題分析】根據(jù)對數(shù)的運算公式,即可求解.【題目詳解】根據(jù)對數(shù)的運算公式,可得.故答案為:.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)2【解題分析】(1)直接由求得的值;(2)由對數(shù)的真數(shù)大于0求得的定義域,判定在上的增減性,求出在上的最值,即得值域【題目詳解】解:(1)∵,∴,∴;(2)由得,∴函數(shù)的定義域為,,∴當時,是增函數(shù);當時,是減函數(shù),∴函數(shù)在上的最大值是【題目點撥】本題考查了求函數(shù)的定義域和值域的問題,利用對數(shù)函數(shù)的真數(shù)大于0可求得定義域,利用函數(shù)的單調(diào)性可求得值域18、(1)當時,;當時,;(2);【解題分析】(1)根據(jù)題意分別代入求出,再比較的大小,利用函數(shù)的單調(diào)性即可求解.(2)先表示出的表達式,再根據(jù)函數(shù)的單調(diào)性求的值域.【題目詳解】解:(1)當時,在上單調(diào)遞減;,,又,,故;同理可得:當時,在上單調(diào)遞增;,,又,,故,綜上所述:當時,;當時,;(2)由題意可知:,,,故在上單調(diào)遞增;令,,當時,在上單調(diào)遞增;故在上單調(diào)遞減;故在上單調(diào)遞減;故,故的值域為:.19、(1)樣本空間答案見解析,概率是(2)【解題分析】(1)將2名女生,3名男生分別用a,b;c,d,e表示,即可列出樣本空間,再根據(jù)古典概型的概率公式計算可得;(2)設(shè)事件“當選的2名同學(xué)中至少有1名男生”,事件“當選的2名同學(xué)中全部都是女生”,事件B,C為對立事件,利用古典概型的概率公式求出,最后根據(jù)對立事件的概率公式計算可得;【小問1詳解】解:將2名女生,3名男生分別用a,b;c,d,e表示,則從5名同學(xué)中任選2名同學(xué)試驗的樣本空間為,共有10個樣本點,設(shè)事件“當選的2名同學(xué)中恰有1名女生”,則,樣本點有6個,∴.即當選的2名同學(xué)中恰有1名女生的概率是【小問2詳解】解:設(shè)事件“當選的2名同學(xué)中至少有1名男生”,事件“當選的2名同學(xué)中全部都是女生”,事件B,C為對立事件,因為,∴,∴.即當達的2名同學(xué)中至少有1名男生的概率是.20、(1)(2)當海報紙寬為,長為,可使用紙量最少【解題分析】(1)根據(jù)已知條件,先求出梯形長的底邊,再分別求出,,即可求解;(2)根據(jù)已知條件,結(jié)合基本不等式的公式,即可求解【小問1詳解】宣傳欄(圖中陰影部分)的面積之和為,直角梯形的高為,則梯形長的底邊,海報上所有水平方向和豎直方向的留空寬度均為,,,故海報面積為【小問2詳解】直角梯形的高為,宣傳欄(圖中陰影部分)的面積之和為,,海報上所有水平方向和豎直方向的留空寬度均為,海報寬,海報長,故,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024有限責(zé)任公司股東合作協(xié)議書:生物醫(yī)藥研發(fā)3篇
- 個人2024年度在線教育服務(wù)合同5篇
- 海底兩萬里觀后感與探討
- 16大家一起來合作 (說課稿)-部編版道德與法治一年級下冊
- 3 古詩詞三首 西江月·夜行黃沙道中(說課稿)-2024-2025學(xué)年統(tǒng)編版語文六年級上冊
- 上饒衛(wèi)生學(xué)校二期建設(shè)項目(2024版)
- 會員協(xié)議書范本
- 保溫系統(tǒng)施工的合同范本
- 專用化學(xué)品銷售協(xié)議示例(2024年發(fā)布)版B版
- 專用設(shè)備買賣協(xié)議細則(2024版)版B版
- 痤瘡詳細版課件
- 精算學(xué)專業(yè)職業(yè)生涯規(guī)劃書
- 2023年河南省普通高校專升本公共英語真題(試卷+答案)
- 保安應(yīng)急突發(fā)事件的培訓(xùn)內(nèi)容
- 微服務(wù)架構(gòu)設(shè)計與實施
- 2023-2024學(xué)年上海市交大附中嘉定高二物理第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析
- 智能家居App產(chǎn)品需求文檔
- 某尾礦庫閉庫綜合治理可研報告
- 人教版五年級語文上冊期末試卷(含答案)
- 跳倉法施工方案
- 中國腦卒中護理指導(dǎo)規(guī)范
評論
0/150
提交評論