版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆新疆呼圖壁縣一中高一數(shù)學(xué)第一學(xué)期期末考試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某人用如圖所示的紙片,沿折痕折后粘成一個四棱錐形的“走馬燈”,正方形做燈底,且有一個三角形面上寫上了“年”字,當(dāng)燈旋轉(zhuǎn)時,正好看到“新年快樂”的字樣,則在①、②、③處應(yīng)依次寫上A.快、新、樂 B.樂、新、快C.新、樂、快 D.樂、快、新2.命題“,使.”的否定形式是()A.“,使” B.“,使”C.“,使” D.“,使”3.已知不等式的解集為,則不等式的解集是()A. B.C.或 D.或4.函數(shù)在區(qū)間單調(diào)遞減,在區(qū)間上有零點,則的取值范圍是A. B.C. D.5.若函數(shù)的零點所在的區(qū)間為,則實數(shù)a的取值范圍是()A. B.C. D.6.若函數(shù)的一個正數(shù)零點附近的函數(shù)值用二分法計算,其參考數(shù)據(jù)如下:那么方程的一個近似根(精確度)可以是()A. B.C. D.7.已知函數(shù)且,則實數(shù)的范圍()A. B.C. D.8.若函數(shù)的定義域為R,則下列函數(shù)必為奇函數(shù)的是()A. B.C. D.9.將函數(shù)圖象上所有點的橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變),再將所得的圖象向右平移個單位,得到的圖象對應(yīng)的解析式是A. B.C. D.10.A. B.C.2 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.定義在R上的奇函數(shù)f(x)周期為2,則__________.12.已知函數(shù)是冪函數(shù),且在x∈(0,+∞)上遞減,則實數(shù)m=________13.已知函數(shù)若函數(shù)有三個不同的零點,且,則的取值范圍是____14.___________.15.已知集合(1)當(dāng)時,求的非空真子集的個數(shù);(2)當(dāng)時,若,求實數(shù)的取值范圍16.已知,,則的值為三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知.(1)求的值;(2)若且,求sin2α-cosα的值18.已知的圖象上相鄰兩對稱軸的距離為.(1)若,求的遞增區(qū)間;(2)若時,若的最大值與最小值之和為5,求的值.19.已知向量,,若存在非零實數(shù),使得,,且,試求:的最小值20.(1)已知,先化簡f(α),再求f()的值;(2)若已知sin(-x)=,且0<x<,求sin的值.21.已知函數(shù)是定義在上的奇函數(shù).(1)求實數(shù)的值;(2)解關(guān)于的不等式;(3)是否存在實數(shù),使得函數(shù)在區(qū)間上的取值范圍是?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】根據(jù)四棱錐圖形,正好看到“新年快樂”的字樣,可知順序為②年①③,即可得出結(jié)論【題目詳解】根據(jù)四棱錐圖形,正好看到“新年快樂”的字樣,可知順序為②年①③,故選A【題目點撥】本題考查四棱錐的結(jié)構(gòu)特征,考查學(xué)生對圖形的認(rèn)識,屬于基礎(chǔ)題.2、D【解題分析】根據(jù)特稱命題的否定是全稱命題,即可得出命題的否定形式【題目詳解】因為特稱命題的否定是全稱命題,所以命題“,使”的否定形式為:,使故選:D3、A【解題分析】由不等式的解集為,可得的根為,由韋達(dá)定理可得的值,代入不等式解出其解集即可.【題目詳解】的解集為,則的根為,即,,解得,則不等式可化為,即為,解得或,故選:A.4、C【解題分析】分析:結(jié)合余弦函數(shù)的單調(diào)減區(qū)間,求出零點,再結(jié)合零點范圍列出不等式詳解:當(dāng),,又∵,則,即,,由得,,∴,解得,綜上.故選C.點睛:余弦函數(shù)的單調(diào)減區(qū)間:,增區(qū)間:,零點:,對稱軸:,對稱中心:,.5、C【解題分析】由函數(shù)的性質(zhì)可得在上是增函數(shù),再由函數(shù)零點存在定理列不等式組,即可求解得a的取值范圍.【題目詳解】易知函數(shù)在上單調(diào)遞增,且函數(shù)零點所在的區(qū)間為,所以,解得故選:C6、C【解題分析】根據(jù)二分法求零點的步驟以及精確度可求得結(jié)果.【題目詳解】因為,所以,所以函數(shù)在內(nèi)有零點,因為,所以不滿足精確度;因為,所以,所以函數(shù)在內(nèi)有零點,因為,所以不滿足精確度;因為,所以,所以函數(shù)在內(nèi)有零點,因為,所以不滿足精確度;因為,所以,所以函數(shù)在內(nèi)有零點,因為,所以不滿足精確度;因為,,所以函數(shù)在內(nèi)有零點,因為,所以滿足精確度,所以方程的一個近似根(精確度)是區(qū)間內(nèi)的任意一個值(包括端點值),根據(jù)四個選項可知選C.故選:C【題目點撥】關(guān)鍵點點睛:掌握二分法求零點的步驟以及精確度的概念是解題關(guān)鍵.7、B【解題分析】根據(jù)解析式得,進(jìn)而得令,得為奇函數(shù),,進(jìn)而結(jié)合函數(shù)單調(diào)性求解即可.【題目詳解】函數(shù),定義域為,滿足,所以,令,所以,所以奇函數(shù),,函數(shù)在均為增函數(shù),所以在為增函數(shù),所以在為增函數(shù),因為為奇函數(shù),所以在為增函數(shù),所以,解得.故選:B.8、C【解題分析】根據(jù)奇偶性的定義判斷可得答案.【題目詳解】,由得是偶函數(shù),故A錯誤;,由得是偶函數(shù),故B錯誤;,由得是奇函數(shù),故C正確;,由得是偶函數(shù),故D錯誤;故選:C.9、D【解題分析】橫坐標(biāo)伸長倍,則變?yōu)椋桓鶕?jù)左右平移的原則可得解析式.【題目詳解】橫坐標(biāo)伸長倍得:向右平移個單位得:本題正確選項:【題目點撥】本題考查三角函數(shù)圖象平移變換和伸縮變換,關(guān)鍵是能夠明確伸縮變換和平移變換都是針對于的變化.10、D【解題分析】因,選D二、填空題:本大題共6小題,每小題5分,共30分。11、0【解題分析】以周期函數(shù)和奇函數(shù)的性質(zhì)去求解即可.【題目詳解】因為是R上的奇函數(shù),所以,又周期為2,所以,又,所以,故,則對任意,故故答案為:012、2【解題分析】由冪函數(shù)的定義可得m2-m-1=1,得出m=2或m=-1,代入驗證即可.【題目詳解】是冪函數(shù),根據(jù)冪函數(shù)的定義和性質(zhì),得m2-m-1=1解得m=2或m=-1,當(dāng)m=2時,f(x)=x-3在(0,+∞)上是減函數(shù),符合題意;當(dāng)m=-1時,f(x)=x0=1在(0,+∞)上不是減函數(shù),所以m=2故答案為:2【題目點撥】本題考查了冪函數(shù)的定義,考查了理解辨析能力和計算能力,屬于基礎(chǔ)題目.13、;【解題分析】作圖可知:點睛:利用函數(shù)零點情況求參數(shù)值或取值范圍的方法(1)利用零點存在的判定定理構(gòu)建不等式求解.(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問題求解.(3)轉(zhuǎn)化為兩熟悉的函數(shù)圖象的上、下關(guān)系問題,從而構(gòu)建不等式求解.14、2【解題分析】利用換底公式及對數(shù)的性質(zhì)計算可得;【題目詳解】解:.故答案為:15、(1)30(2)或【解題分析】(1)當(dāng)時,可得中元素的個數(shù),進(jìn)而可得的非空真子集的個數(shù);(2)根據(jù),可分和兩種情況討論,可得出實數(shù)的取值范圍【小問1詳解】當(dāng)時,,共有5個元素,所以的非空真子集的個數(shù)為【小問2詳解】(1)當(dāng)時,,解得;(2)當(dāng)時,根據(jù)題意作出如圖所示的數(shù)軸,可得或解得:或綜上可得,實數(shù)的取值范圍是或16、3【解題分析】,故答案為3.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解題分析】(1)利用誘導(dǎo)公式化簡可得,代入數(shù)據(jù),即可求得答案.(2)根據(jù)題意,可得,根據(jù)左右同時平方,利用的關(guān)系,結(jié)合的范圍,即可求得和的值,即可求得答案.【題目詳解】(1)利用誘導(dǎo)公式化簡可得,.(2)因為,所以,即,兩邊平方得1+2sinαcosα=,所以2sinαcosα=-,1-2sinαcosα=,即(sinα-cosα)2=,因為2sinαcosα=,,所以,所以sinα-cosα>0,所以sinα-cosα=,結(jié)合cosα+sinα=,解得sinα=,cosα=-,故sin2α-cosα=-(-)=.18、(1)增區(qū)間是[kπ-,kπ+],k∈Z(2)【解題分析】首先根據(jù)已知條件,求出周期,進(jìn)而求出的值,確定出函數(shù)解析式,由正弦函數(shù)的遞增區(qū)間,,即可求出的遞增區(qū)間由確定出的函數(shù)解析式,根據(jù)的范圍求出這個角的范圍,利用正弦函數(shù)的圖象與性質(zhì)即可求出函數(shù)的最大值,即可得到的值解析:已知由,則T=π=,∴w=2∴(1)令-+2kπ≤2x+≤+2kπ則-+kπ≤x≤+kπ故f(x)的增區(qū)間是[kπ-,kπ+],k∈Z(2)當(dāng)x∈[0,]時,≤2x+≤∴sin(2x+)∈[-,1]∴∴點睛:這是一道求三角函數(shù)遞增區(qū)間以及利用函數(shù)在某區(qū)間的最大值求得參數(shù)的題目,主要考查了兩角和的正弦函數(shù)公式,正弦函數(shù)的單調(diào)性,以及正弦函數(shù)的定義域和值域,解題的關(guān)鍵是熟練掌握正弦函數(shù)的性質(zhì),屬于中檔題19、【解題分析】根據(jù)向量數(shù)量積的坐標(biāo)公式和性質(zhì),分別求出,且,由此將化簡整理得到.將此代入,可得關(guān)于的二次函數(shù),根據(jù)二次函數(shù)的單調(diào)性即可得到的最小值【題目詳解】解:,,,,且,,且,,即,即,即,將、和代入上式,可得,整理得,因為,為非零實數(shù),所以且,由此可得,當(dāng)時,的最小值等于20、(1),;(2).【解題分析】(1)利用誘導(dǎo)公式化簡f(α)即可;(2)-x和互余,所以sin=cos,再結(jié)合已知條件即可求解.【題目詳解】(1);f()=;(2),.21、(1)1(2)(3)存在,【解題分析】(1)根據(jù)求解并檢驗即可;(2)先證明函數(shù)單調(diào)性得在上為增函數(shù),再根據(jù)奇偶性與單調(diào)性解不等式即可;(3)根據(jù)題意,將問題方程有兩個不相等的實數(shù)根,再利用換元法,結(jié)合二次方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 借款合同服務(wù)協(xié)議書(2篇)
- 吉林長春外國語學(xué)校2025屆高三上學(xué)期期中考試化學(xué)試卷試題及答案解析
- 豐田汽車租賃合同
- 債權(quán)融資服務(wù)合同
- 停車場地出租合同
- 八年級語文上冊第四單元寫作語言要連貫教案新人教版1
- 六年級數(shù)學(xué)上冊5圓綜合與實踐確定起跑線教案新人教版
- 2024年金融科技公司應(yīng)收賬款質(zhì)押業(yè)務(wù)合作協(xié)議3篇
- 2025年硫代硫酸鹽項目發(fā)展計劃
- 第2課 第二次鴉片戰(zhàn)爭(解析版)
- 2024年版移動通信基站專用房屋及土地租賃合同
- 部編版五年級語文上冊第六單元教案(共6課時)
- 鉆井與完井工程-第一章-鉆井與完井工程概述
- (新版)工業(yè)機器人系統(tǒng)操作員(三級)職業(yè)鑒定理論考試題庫(含答案)
- 食材配送服務(wù)方案(技術(shù)方案)
- 課件:《中華民族共同體概論》第一講 中華民族共同體基礎(chǔ)理論
- 2024-2025學(xué)年安徽省合肥市蜀山區(qū)數(shù)學(xué)四年級第一學(xué)期期末質(zhì)量檢測試題含解析
- 離婚協(xié)議書模板可打印(2024版)
- 2024國家開放大學(xué)電大專科《獸醫(yī)基礎(chǔ)》期末試題及答案試卷號2776
- 廠區(qū)保潔服務(wù)投標(biāo)方案【2024版】技術(shù)方案
- 養(yǎng)老機構(gòu)績效考核及獎勵制度
評論
0/150
提交評論